The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Interleukin-4 but not interleukin-10 protects against spontaneous and recurrent type 1 diabetes by activated CD1d-restricted invariant natural killer T-cells.

In nonobese diabetic (NOD) mice, a deficiency in the number and function of invariant natural killer T-cells (iNKT cells) contributes to the onset of type 1 diabetes. The activation of CD1d-restricted iNKT cells by alpha-galactosylceramide (alpha-GalCer) corrects these deficiencies and protects against spontaneous and recurrent type 1 diabetes. Although interleukin (IL)-4 and IL-10 have been implicated in alpha-GalCer-induced protection from type 1 diabetes, a precise role for these cytokines in iNKT cell regulation of susceptibility to type 1 diabetes has not been identified. Here we use NOD.IL-4(-/-) and NOD.IL-10(-/-) knockout mice to further evaluate the roles of IL-4 and IL-10 in alpha-GalCer-induced protection from type 1 diabetes. We found that IL-4 but not IL-10 expression mediates protection against spontaneous type 1 diabetes, recurrent type 1 diabetes, and prolonged syngeneic islet graft function. Increased transforming growth factor-beta gene expression in pancreatic lymph nodes may be involved in alpha-GalCer-mediated protection in NOD.IL-10(-/-) knockout mice. Unlike the requirement of IL-7 and IL-15 to maintain iNKT cell homeostasis, IL-4 and IL-10 are not required for alpha-GalCer-induced iNKT cell expansion and/or survival. Our data identify an important role for IL-4 in the protection against type 1 diabetes by activated iNKT cells, and these findings have important implications for cytokine-based therapy of type 1 diabetes and islet transplantation.[1]


WikiGenes - Universities