The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Islets of Langerhans Transplantation

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Islets of Langerhans Transplantation

 

High impact information on Islets of Langerhans Transplantation

  • In conclusion, an adequate insulin delivery in the peripheral circulation, obtained by islet transplantation, fully restores the muscle glucose transport system to normal in streptozocin diabetic rats [6].
  • To determine whether this inability is due to inadequate insulin replacement, we studied fasted streptozocin-induced diabetic Lewis rats either untreated or after islet transplantation under the kidney capsule [6].
  • The dual role of Fas-ligand as an injury effector and defense strategy in diabetes and islet transplantation [7].
  • Cyclin D1 may thus be considered a potential candidate to augment the beta-cell population ex vivo as a prelude to islet transplantation for diabetes [8].
  • In the present study, we show that islets intended for islet transplantation produce tissue factor in both the transmembrane and the alternatively spliced form and that the membrane-bound form is released as microparticles often associated with both insulin and glucagon granules [9].
 

Chemical compound and disease context of Islets of Langerhans Transplantation

 

Biological context of Islets of Langerhans Transplantation

 

Anatomical context of Islets of Langerhans Transplantation

 

Associations of Islets of Langerhans Transplantation with chemical compounds

  • Plasma glucose was increased in untreated diabetics and normalized by the islet transplantation (110 +/- 5, 452 +/- 9, and 102 +/- 3 mg/dl in controls, untreated diabetics, and transplanted diabetics, respectively) [6].
  • This suggests that cell-mediated immune reactions are of etiologic significance in this diabetes model, since mice made diabetic by a single large dose of streptozotocin and subsequently cured by islet transplantation remained unaffected by the booster-dose administration of streptozotocin [20].
  • Treatment of diabetic recipients with cyclosporine (CsA) was begun 3-5 days before islet transplantation and the initial dosage was adjusted to attain and maintain CsA serum trough levels between 400 and 600 ng/ml [21].
  • Recent success using a steroid-free immunosuppressive regimen has renewed enthusiasm for the use of islet transplantation to treat diabetes [22].
  • Acute insulin responses to arginine, glucose, and GPAIS were significantly reduced after islet transplantation in both study groups [23].
 

Gene context of Islets of Langerhans Transplantation

 

Analytical, diagnostic and therapeutic context of Islets of Langerhans Transplantation

References

  1. Production of tissue factor by pancreatic islet cells as a trigger of detrimental thrombotic reactions in clinical islet transplantation. Moberg, L., Johansson, H., Lukinius, A., Berne, C., Foss, A., Källen, R., Østraat, Ø., Salmela, K., Tibell, A., Tufveson, G., Elgue, G., Nilsson Ekdahl, K., Korsgren, O., Nilsson, B. Lancet (2002) [Pubmed]
  2. Hepatocellular neoplasms induced by low-number pancreatic islet transplants in autoimmune diabetic BB/Pfd rats. Dombrowski, F., Mathieu, C., Evert, M. Cancer Res. (2006) [Pubmed]
  3. Five-year follow-up after clinical islet transplantation. Ryan, E.A., Paty, B.W., Senior, P.A., Bigam, D., Alfadhli, E., Kneteman, N.M., Lakey, J.R., Shapiro, A.M. Diabetes (2005) [Pubmed]
  4. Prolongation of graft survival in allogeneic islet transplantation by (-) 15-deoxyspergualin in the rat. Walter, P.K., Dickneite, G., Schorlemmer, H.U., Sedlacek, H.H., Jäger, S., Feifel, G., Seitz, G. Diabetologia (1987) [Pubmed]
  5. Pancreatic islet transplantation in cynomolgus monkeys. Initial studies and evidence that cyclosporine impairs glucose tolerance in normal monkeys. Stegall, M.D., Chabot, J., Weber, C., Reemtsma, K., Hardy, M.A. Transplantation (1989) [Pubmed]
  6. Islet transplantation under the kidney capsule fully corrects the impaired skeletal muscle glucose transport system of streptozocin diabetic rats. Napoli, R., Davalli, A.M., Hirshman, M.F., Weitgasser, R., Weir, G.C., Horton, E.S. J. Clin. Invest. (1996) [Pubmed]
  7. The dual role of Fas-ligand as an injury effector and defense strategy in diabetes and islet transplantation. Pearl-Yafe, M., Yolcu, E.S., Yaniv, I., Stein, J., Shirwan, H., Askenasy, N. Bioessays (2006) [Pubmed]
  8. Overexpression of cyclin D1 in pancreatic beta-cells in vivo results in islet hyperplasia without hypoglycemia. Zhang, X., Gaspard, J.P., Mizukami, Y., Li, J., Graeme-Cook, F., Chung, D.C. Diabetes (2005) [Pubmed]
  9. Tissue factor produced by the endocrine cells of the islets of Langerhans is associated with a negative outcome of clinical islet transplantation. Johansson, H., Lukinius, A., Moberg, L., Lundgren, T., Berne, C., Foss, A., Felldin, M., Källen, R., Salmela, K., Tibell, A., Tufveson, G., Ekdahl, K.N., Elgue, G., Korsgren, O., Nilsson, B. Diabetes (2005) [Pubmed]
  10. Urinary excretion of alanine aminopeptidase and total proteinuria in experimental diabetes mellitus before and after islet transplantation. Bretzel, R.G., Schneider, J., Zimmermann, I., Küppers, B., Weise, M., Federlin, K. Contributions to nephrology. (1981) [Pubmed]
  11. DcR3/TR6 effectively prevents islet primary nonfunction after transplantation. Wu, Y., Han, B., Luo, H., Roduit, R., Salcedo, T.W., Moore, P.A., Zhang, J., Wu, J. Diabetes (2003) [Pubmed]
  12. Peroxidative stress in diabetic blood vessels. Reversal by pancreatic islet transplantation. Pieper, G.M., Jordan, M., Dondlinger, L.A., Adams, M.B., Roza, A.M. Diabetes (1995) [Pubmed]
  13. Heme oxygenase-1 induction in islet cells results in protection from apoptosis and improved in vivo function after transplantation. Pileggi, A., Molano, R.D., Berney, T., Cattan, P., Vizzardelli, C., Oliver, R., Fraker, C., Ricordi, C., Pastori, R.L., Bach, F.H., Inverardi, L. Diabetes (2001) [Pubmed]
  14. CXC chemokine ligand 10 neutralization suppresses the occurrence of diabetes in nonobese diabetic mice through enhanced beta cell proliferation without affecting insulitis. Morimoto, J., Yoneyama, H., Shimada, A., Shigihara, T., Yamada, S., Oikawa, Y., Matsushima, K., Saruta, T., Narumi, S. J. Immunol. (2004) [Pubmed]
  15. Progressive islet graft failure occurs significantly earlier in autoantibody-positive than in autoantibody-negative IDDM recipients of intrahepatic islet allografts. Jaeger, C., Brendel, M.D., Hering, B.J., Eckhard, M., Bretzel, R.G. Diabetes (1997) [Pubmed]
  16. Insulin independence after islet transplantation into type I diabetic patient. Scharp, D.W., Lacy, P.E., Santiago, J.V., McCullough, C.S., Weide, L.G., Falqui, L., Marchetti, P., Gingerich, R.L., Jaffe, A.S., Cryer, P.E. Diabetes (1990) [Pubmed]
  17. Effects of streptozocin diabetes and diabetes treatment by islet transplantation on in vivo insulin signaling in rat heart. Laviola, L., Belsanti, G., Davalli, A.M., Napoli, R., Perrini, S., Weir, G.C., Giorgino, R., Giorgino, F. Diabetes (2001) [Pubmed]
  18. Cephalic phase, reflex insulin secretion. Neuroanatomical and physiological characterization. Berthoud, H.R., Bereiter, D.A., Trimble, E.R., Siegel, E.G., Jeanrenaud, B. Diabetologia (1981) [Pubmed]
  19. Islet transplants in diabetic Lewis rats prevent and reverse diabetes-induced increases in vascular permeability and prevent but do not reverse collagen solubility changes. Williamson, J.R., Chang, K., Rowold, E., Kilo, C., Lacy, P.E. Diabetologia (1986) [Pubmed]
  20. Survival of intrasplenically implanted islets in mice with experimental insulitis and hyperglycemia. Sandler, S., Andersson, A. Diabetes (1982) [Pubmed]
  21. Successful long-term survival of pancreatic islet allografts in spontaneous or pancreatectomy-induced diabetes in dogs. Cyclosporine-induced immune unresponsiveness. Alejandro, R., Cutfield, R., Shienvold, F.L., Latif, Z., Mintz, D.H. Diabetes (1985) [Pubmed]
  22. Calcineurin inhibitor-free CD28 blockade-based protocol protects allogeneic islets in nonhuman primates. Adams, A.B., Shirasugi, N., Durham, M.M., Strobert, E., Anderson, D., Rees, P., Cowan, S., Xu, H., Blinder, Y., Cheung, M., Hollenbaugh, D., Kenyon, N.S., Pearson, T.C., Larsen, C.P. Diabetes (2002) [Pubmed]
  23. Successful islet autotransplantation in humans: functional insulin secretory reserve as an estimate of surviving islet cell mass. Teuscher, A.U., Kendall, D.M., Smets, Y.F., Leone, J.P., Sutherland, D.E., Robertson, R.P. Diabetes (1998) [Pubmed]
  24. Interleukin-4 but not interleukin-10 protects against spontaneous and recurrent type 1 diabetes by activated CD1d-restricted invariant natural killer T-cells. Mi, Q.S., Ly, D., Zucker, P., McGarry, M., Delovitch, T.L. Diabetes (2004) [Pubmed]
  25. Human pancreatic islets produce and secrete MCP-1/CCL2: relevance in human islet transplantation. Piemonti, L., Leone, B.E., Nano, R., Saccani, A., Monti, P., Maffi, P., Bianchi, G., Sica, A., Peri, G., Melzi, R., Aldrighetti, L., Secchi, A., Di Carlo, V., Allavena, P., Bertuzzi, F. Diabetes (2002) [Pubmed]
  26. Role of donor-derived monocyte chemoattractant protein-1 in murine islet transplantation. Schröppel, B., Zhang, N., Chen, P., Chen, D., Bromberg, J.S., Murphy, B. J. Am. Soc. Nephrol. (2005) [Pubmed]
  27. Pancreatic islets from cyclin-dependent kinase 4/R24C (Cdk4) knockin mice have significantly increased beta cell mass and are physiologically functional, indicating that Cdk4 is a potential target for pancreatic beta cell mass regeneration in Type 1 diabetes. Marzo, N., Mora, C., Fabregat, M.E., Martín, J., Usac, E.F., Franco, C., Barbacid, M., Gomis, R. Diabetologia (2004) [Pubmed]
  28. Effects of intraportal islet transplantation on the transplanted tissue and the recipient pancreas. I. Functional studies. Trimble, E.R., Karakash, C., Malaisse-Lagae, F., Vassutine, I., Orci, L., Renold, A.E. Diabetes (1980) [Pubmed]
  29. Genetic engineering of a suboptimal islet graft with A20 preserves beta cell mass and function. Grey, S.T., Longo, C., Shukri, T., Patel, V.I., Csizmadia, E., Daniel, S., Arvelo, M.B., Tchipashvili, V., Ferran, C. J. Immunol. (2003) [Pubmed]
  30. Preclinical evaluation of tolerance induction protocols and islet transplantation in non-human primates. Montgomery, S.P., Hale, D.A., Hirshberg, B., Harlan, D.M., Kirk, A.D. Immunol. Rev. (2001) [Pubmed]
  31. The favorable outcome of human islet transplantation in Korea: experiences of 10 autologous transplantations. Lee, B.W., Jee, J.H., Heo, J.S., Choi, S.H., Jang, K.T., Noh, J.H., Jeong, I.K., Oh, S.H., Ahn, Y.R., Chae, H.Y., Min, Y.K., Chung, J.H., Lee, M.K., Lee, M.S., Kim, K.W. Transplantation (2005) [Pubmed]
  32. Successful islet/abdominal testis transplantation does not require Leydig cells. Cameron, D.F., Whittington, K., Schultz, R.E., Selawry, H.P. Transplantation (1990) [Pubmed]
 
WikiGenes - Universities