The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Long-term intermittent hypoxia in mice: protracted hypersomnolence with oxidative injury to sleep-wake brain regions.

STUDY OBJECTIVES: This study was designed to test the hypothesis that long-term intermittent hypoxia (LTIH), modeling the hypoxia-reoxygenation events of sleep apnea, results in oxidative neural injury, including wake-promoting neural groups, and that this injury contributes to residual impaired maintenance of wakefulness. DESIGN: Sleep times and oxidative-injury parameters were compared for mice exposed to LTIH and mice exposed to sham LTIH. SUBJECTS: Adult male C57BL/6J mice were studied. INTERVENTIONS: Mice were exposed to LTIH or sham LTIH in the lights-on period daily for 8 weeks. Electrophysiologic sleep-wake recordings and oxidative-injury measures were performed either immediately or 2 weeks following LTIH exposures. MEASUREMENTS AND RESULTS: At both intervals, total sleep time per 24 hours in LTIH-exposed mice was increased by more than 2 hours, (P<.01). Mean sleep latency was reduced in LTIH-exposed mice relative to sham LTIH mice (8.9 +/- 1.0 minutes vs 12.7 +/- 0.5 minutes, respectively, P<.01). Oxidative injury was present 2 weeks following LTIH in wake-promoting regions of the basal forebrain and brainstem: elevated isoprostane 8,12-iso-IPF2alpha-VI, 22%, P<.05; increased protein carbonylation, 50%, P<.05, increased nitration, 200%, P<.05, and induction of antioxidant enzymes glutathione reductase and methionine sulfoxide reductase A, P<.01. CONCLUSIONS: Exposure to LTIH results in an array of significant oxidative injuries in sleep-wake regions of the brain, and these biochemical changes are associated with marked hypersomnolence and increased susceptibility to short-term sleep loss. The residual forebrain redox alterations in wake-promoting brain regions may contribute to persistent sleepiness in a prevalent disorder, obstructive sleep apnea.[1]

References

  1. Long-term intermittent hypoxia in mice: protracted hypersomnolence with oxidative injury to sleep-wake brain regions. Veasey, S.C., Davis, C.W., Fenik, P., Zhan, G., Hsu, Y.J., Pratico, D., Gow, A. Sleep. (2004) [Pubmed]
 
WikiGenes - Universities