The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review

Protein Carbonylation

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

High impact information on Protein Carbonylation

  • Expression levels of antioxidant defense enzymes, protein carbonylation levels, and aconitase enzyme activity measurements indicated no or only minor oxidative stress in tissues from mtDNA mutator mice [1].
  • Furthermore, PD-linked mutations of parkin significantly abrogated the protective effect of wild-type parkin, as well as its ability to suppress ROS and protein carbonylation [2].
  • The chrR expression level also correlated with intracellular H(2)O(2) levels as measured by protein carbonylation assays and fluorescence-activated cell scanning analysis with the H(2)O(2)-responsive dye H(2)DCFDA [3].
  • Moreover, mitochondrial protein carbonylation levels in sod1, sod2, and sod1sod2 mutants are not elevated in cells harvested from mid-logarithmic and early stationary phases, suggesting that neither MnSOD nor CuZnSOD is required for protecting the majority of mitochondrial proteins from oxidative damage during these early phases of growth [4].
  • However, exposure to NO/O2 caused a marked reduction in nuclear localization and an increase in protein carbonyl formation of NF-kappaB p65 subunit [5].

Biological context of Protein Carbonylation


Anatomical context of Protein Carbonylation


Associations of Protein Carbonylation with chemical compounds


Gene context of Protein Carbonylation


Analytical, diagnostic and therapeutic context of Protein Carbonylation


  1. Somatic mtDNA mutations cause aging phenotypes without affecting reactive oxygen species production. Trifunovic, A., Hansson, A., Wredenberg, A., Rovio, A.T., Dufour, E., Khvorostov, I., Spelbrink, J.N., Wibom, R., Jacobs, H.T., Larsson, N.G. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  2. Parkin protects human dopaminergic neuroblastoma cells against dopamine-induced apoptosis. Jiang, H., Ren, Y., Zhao, J., Feng, J. Hum. Mol. Genet. (2004) [Pubmed]
  3. ChrR, a soluble quinone reductase of Pseudomonas putida that defends against H2O2. Gonzalez, C.F., Ackerley, D.F., Lynch, S.V., Matin, A. J. Biol. Chem. (2005) [Pubmed]
  4. Mitochondrial protein oxidation in yeast mutants lacking manganese-(MnSOD) or copper- and zinc-containing superoxide dismutase (CuZnSOD): evidence that MnSOD and CuZnSOD have both unique and overlapping functions in protecting mitochondrial proteins from oxidative damage. O'Brien, K.M., Dirmeier, R., Engle, M., Poyton, R.O. J. Biol. Chem. (2004) [Pubmed]
  5. Suppression of nuclear factor-kappa B activity by nitric oxide and hyperoxia in oxygen-resistant cells. Franek, W.R., Chowdary, Y.C., Lin, X., Hu, M., Miller, E.J., Kazzaz, J.A., Razzano, P., Romashko, J., Davis, J.M., Narula, P., Horowitz, S., Scott, W., Mantell, L.L. J. Biol. Chem. (2002) [Pubmed]
  6. 9,10-Phenanthraquinone in diesel exhaust particles downregulates Cu,Zn-SOD and HO-1 in human pulmonary epithelial cells: intracellular iron scavenger 1,10-phenanthroline affords protection against apoptosis. Sugimoto, R., Kumagai, Y., Nakai, Y., Ishii, T. Free Radic. Biol. Med. (2005) [Pubmed]
  7. Melatonin ameliorates chronic renal failure-induced oxidative organ damage in rats. Sener, G., Paskaloglu, K., Toklu, H., Kapucu, C., Ayanoglu-Dulger, G., Kacmaz, A., Sakarcan, A. J. Pineal Res. (2004) [Pubmed]
  8. High-throughput proteomic-based identification of oxidatively induced protein carbonylation in mouse brain. Soreghan, B.A., Yang, F., Thomas, S.N., Hsu, J., Yang, A.J. Pharm. Res. (2003) [Pubmed]
  9. RNA expression induced by cisplatin in an organ of Corti-derived immortalized cell line. Previati, M., Lanzoni, I., Corbacella, E., Magosso, S., Giuffrè, S., Francioso, F., Arcelli, D., Volinia, S., Barbieri, A., Hatzopoulos, S., Capitani, S., Martini, A. Hear. Res. (2004) [Pubmed]
  10. Oxidative stress and apoptosis in fetal rat liver induced by maternal cholestasis. Protective effect of ursodeoxycholic acid. Perez, M.J., Macias, R.I., Duran, C., Monte, M.J., Gonzalez-Buitrago, J.M., Marin, J.J. J. Hepatol. (2005) [Pubmed]
  11. Glyoxal markedly compromises hepatocyte resistance to hydrogen peroxide. Shangari, N., Chan, T.S., Popovic, M., O'brien, P.J. Biochem. Pharmacol. (2006) [Pubmed]
  12. Vitamin E protects against alcohol-induced cell loss and oxidative stress in the neonatal rat hippocampus. Marino, M.D., Aksenov, M.Y., Kelly, S.J. Int. J. Dev. Neurosci. (2004) [Pubmed]
  13. Temporal relationships between HIV-1 Tat-induced neuronal degeneration, OX-42 immunoreactivity, reactive astrocytosis, and protein oxidation in the rat striatum. Aksenov, M.Y., Hasselrot, U., Wu, G., Nath, A., Anderson, C., Mactutus, C.F., Booze, R.M. Brain Res. (2003) [Pubmed]
  14. Exposure of yeast cells to anoxia induces transient oxidative stress. Implications for the induction of hypoxic genes. Dirmeier, R., O'Brien, K.M., Engle, M., Dodd, A., Spears, E., Poyton, R.O. J. Biol. Chem. (2002) [Pubmed]
  15. Cardiac overexpression of catalase rescues cardiac contractile dysfunction induced by insulin resistance: role of oxidative stress, protein carbonyl formation and insulin sensitivity. Dong, F., Fang, C.X., Yang, X., Zhang, X., Lopez, F.L., Ren, J. Diabetologia (2006) [Pubmed]
  16. Protein modification caused by a high dose of gamma irradiation in cryo-sterilized plasma: protective effects of ascorbate. Zbikowska, H.M., Nowak, P., Wachowicz, B. Free Radic. Biol. Med. (2006) [Pubmed]
  17. Dietary antioxidants and cigarette smoke-induced biomolecular damage: a complex interaction. Eiserich, J.P., van der Vliet, A., Handelman, G.J., Halliwell, B., Cross, C.E. Am. J. Clin. Nutr. (1995) [Pubmed]
  18. The 6-a-day study: effects of fruit and vegetables on markers of oxidative stress and antioxidative defense in healthy nonsmokers. Dragsted, L.O., Pedersen, A., Hermetter, A., Basu, S., Hansen, M., Haren, G.R., Kall, M., Breinholt, V., Castenmiller, J.J., Stagsted, J., Jakobsen, J., Skibsted, L., Rasmussen, S.E., Loft, S., Sandström, B. Am. J. Clin. Nutr. (2004) [Pubmed]
  19. Hydrogen peroxide-induced carbonylation of key metabolic enzymes in Saccharomyces cerevisiae: the involvement of the oxidative stress response regulators Yap1 and Skn7. Costa, V.M., Amorim, M.A., Quintanilha, A., Moradas-Ferreira, P. Free Radic. Biol. Med. (2002) [Pubmed]
  20. Respiratory loading intensity and diaphragm oxidative stress: N-acetyl-cysteine effects. Barreiro, E., Gáldiz, J.B., Mariñán, M., Alvarez, F.J., Hussain, S.N., Gea, J. J. Appl. Physiol. (2006) [Pubmed]
  21. The effects of derivatives of the nitroxide tempol on UVA-mediated in vitro lipid and protein oxidation. Damiani, E., Castagna, R., Greci, L. Free Radic. Biol. Med. (2002) [Pubmed]
  22. Mitochondrial metabolism underlies hyperoxic cell damage. Li, J., Gao, X., Qian, M., Eaton, J.W. Free Radic. Biol. Med. (2004) [Pubmed]
  23. Nicorandil decreases postischemic actin oxidation. Schwalb, H., Olivson, A., Li, J., Houminer, E., Wahezi, S.E., Opie, L.H., Maulik, D., Borman, J.B., Powell, S.R. Free Radic. Biol. Med. (2001) [Pubmed]
WikiGenes - Universities