Physiological, pharmacokinetic, and pharmacodynamic changes in space.
Medications have been taken since the first Mercury flight in 1967 and, since then, have been used for several indications such as space motion sickness, sleeplessness, headache, nausea, vomiting, back pain, and congestion. As the duration of space missions get longer, it is even more likely that astronauts will encounter some of the acute illnesses that are frequently seen on Earth. Microgravity environment induces several physiological changes in the human body. These changes include cardiovascular degeneration, bone decalcification, decreased plasma volume, blood flow, lymphocyte and eosinophil levels, altered hormonal and electrolyte levels, muscle atrophy, decreased blood cell mass, increased immunoglobulin A and M levels, and a decrease in the amount of microsomal P-450 and the activity of some of its dependent enzymes. These changes may be expected to have severe implications on the pharmacokinetic and pharmacodynamic properties of drug substances.[1]References
- Physiological, pharmacokinetic, and pharmacodynamic changes in space. Graebe, A., Schuck, E.L., Lensing, P., Putcha, L., Derendorf, H. Journal of clinical pharmacology. (2004) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg