Inhibition of malonaldehyde formation in oxidized calf thymus DNA with synthetic and natural antioxidants.
Calf thymus DNA was oxidized by Fenton's reagent with or without synthetic antioxidants (Trolox and DMPO) and natural antioxidants-quercetin, apigenin, 2''-O-glycosylisovitexin (2''-O-GIV), (+)-catechin, cyanidin, pelargonidin, keracyanin, and callistephin. Malonaldehyde (MA) formed in oxidized DNA was analyzed using gas chromatography. MA formed from oxidized DNA without antioxidants was 4.0 +/- 0.53 nmol/mg of DNA in buffer solution, 3.7 +/- 0.34 nmol/mg of DNA in NaOH solution, and 4.6 +/- 0.19 nmol/mg of DNA in HCl solution. MA formed from DNA with antioxidants (at the level of 0.1 micromol/mL) ranged from 1.90 +/- 0.18 (catechin) to 4.10 +/- 0.18 nmol/mg of DNA (cyanidin). Trolox and DMPO inhibited MA formation from DNA by 41.2% and 18.6%, respectively, at the level of 0.1 micromol/mL. Trolox (water-soluble vitamin E) exhibited dose-dependent inhibition. The decreasing order of inhibitory effect by flavonoids at the level of 0.1 micromol/mL was catechin (48.5%) > quercetin (47.1%) > 2''-O-GIV (40.5%) > apigenin (29.9%) and by the anthocyanins at the level of 0.1 micromol/mL was callistephin (45%) > keracyanin (33.2%) > pelargonidin (25.1%) > cyanidin (10.2%).[1]References
- Inhibition of malonaldehyde formation in oxidized calf thymus DNA with synthetic and natural antioxidants. Matsufuji, H., Shibamoto, T. J. Agric. Food Chem. (2004) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg