The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

quercetin     2-(3,4-dihydroxyphenyl)- 3,5,7-trihydroxy...

Synonyms: Quertine, Kvercetin, Meletin, Quercetol, Quercitin, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of quercetin

  • Using published food-composition data for flavonoids, we found an inverse association between intake of quercetin and risk of lung cancer (P for trend =.07) that appears consistent with associations for its food sources [1].
  • We previously reported that quercetin and some other flavonoids inhibited the induction of HSPs in HeLa and COLO 320DM cells, derived from a human colon cancer, at the level of mRNA accumulation [2].
  • In the HuH7 human hepatoma cell line, PON-1 activity and mRNA levels were increased by dietary polyphenolic compounds such as quercetin but also by toxic ligands of the aryl hydrocarbon receptor (AhR) such as 3-methylcholanthrene (3-MC) [3].
  • We show here that quercetin inhibits the clonogenic activity of 20 of 22 acute leukemias (AL; 4 M1-AML, 3 M2-AML, 2 M3-AML, 3 M4-AML, 3 M5-AML, and 7 ALL) [4].
  • Dietary quercetin did not elicit any detectable sign of toxicity [5].
  • Taken together, the results of the present study suggest that quercetin sensitizes glioma cells to death-receptor-mediated apoptosis by suppression of inhibitor of the apoptosis protein survivin [6].
 

Psychiatry related information on quercetin

  • Quercetin-fed mice showed higher activity upon induction by new environmental stimuli, lower anxiety and higher novelty-seeking behavior in the open field tasks, and significantly improved learning and memory ability in step-through and Morris water Maze tests compared with D-gal-treated mice [7].
  • Because quercetin, a natural flavonoid, is known to scavenge free radicals, we investigated whether quercetin attenuates white matter damage in rats with chronic cerebral hypoperfusion, as a model of vascular dementia [8].
  • Peristaltic motor activity suppressed by quercetin (300 micromol/l), but not genistein (100 micromol/l), was partially restored by apamin [9].
  • An i.m. administration of various doses of quercetin admixed with 1.0 mg of MCA, however, significantly shortened the mean latency periods for the development of local primary tumors compared with those of the group which had been given MCA alone [10].
  • Although several recent studies found that both SJ and Ginkgo biloba have the same components of quercetin and rutin, only Ginkgo biloba has been widely used to treat cerebrovascular disorders and dementia in humans [11].
 

High impact information on quercetin

  • The X-ray crystallographic structures of PI3Kgamma bound to these lipid kinase inhibitors and to the broad-spectrum protein kinase inhibitors quercetin, myricetin, and staurosporine reveal how these compounds fit into the ATP binding pocket [12].
  • The partial inhibition of Na+-, K+- ATPase activity by quercetin observed in tumor cells was confirmed in thymocyte plasma membranes [13].
  • Inhibition of PtdIns(4,5)P2 synthesis by quercetin or phenylarsine oxide prevented the relocalization of the fluorescent probe to the membranes after Ca2+ chelation in ionomycin-treated cells or during agonist stimulation [14].
  • The x-ray structures of Aspergillus japonicus 2,3QD anaerobically complexed with the substrate kaempferol and the natural substrate quercetin have been determined at 1.90- and 1.75-A resolution, respectively [15].
  • Addition of quercetin (0.1 mM) and trans-flupenthixol (0.2 mM), inhibitors of nuclear protein kinase II and calmodulin-dependent kinase, respectively, inhibited the synthesis of vitellogenin mRNA by about 55% without affecting total RNA synthesis [16].
 

Chemical compound and disease context of quercetin

 

Biological context of quercetin

 

Anatomical context of quercetin

 

Associations of quercetin with other chemical compounds

 

Gene context of quercetin

 

Analytical, diagnostic and therapeutic context of quercetin

References

  1. Intake of flavonoids and lung cancer. Le Marchand, L., Murphy, S.P., Hankin, J.H., Wilkens, L.R., Kolonel, L.N. J. Natl. Cancer Inst. (2000) [Pubmed]
  2. Inhibition of the activation of heat shock factor in vivo and in vitro by flavonoids. Hosokawa, N., Hirayoshi, K., Kudo, H., Takechi, H., Aoike, A., Kawai, K., Nagata, K. Mol. Cell. Biol. (1992) [Pubmed]
  3. Dietary polyphenols increase paraoxonase 1 gene expression by an aryl hydrocarbon receptor-dependent mechanism. Gouédard, C., Barouki, R., Morel, Y. Mol. Cell. Biol. (2004) [Pubmed]
  4. Quercetin inhibits the growth of leukemic progenitors and induces the expression of transforming growth factor-beta 1 in these cells. Larocca, L.M., Teofili, L., Sica, S., Piantelli, M., Maggiano, N., Leone, G., Ranelletti, F.O. Blood (1995) [Pubmed]
  5. Inhibition of 7,12-dimethylbenz(a)anthracene- and N-nitrosomethylurea-induced rat mammary cancer by dietary flavonol quercetin. Verma, A.K., Johnson, J.A., Gould, M.N., Tanner, M.A. Cancer Res. (1988) [Pubmed]
  6. Quercetin promotes degradation of survivin and thereby enhances death-receptor-mediated apoptosis in glioma cells. Siegelin, M.D., Reuss, D.E., Habel, A., Rami, A., von Deimling, A. Neuro-oncology (2009) [Pubmed]
  7. Quercetin reverses D-galactose induced neurotoxicity in mouse brain. Lu, J., Zheng, Y.L., Luo, L., Wu, D.M., Sun, D.X., Feng, Y.J. Behav. Brain Res. (2006) [Pubmed]
  8. Quercetin, a natural flavonoid, attenuates vacuolar formation in the optic tract in rat chronic cerebral hypoperfusion model. Takizawa, S., Fukuyama, N., Hirabayashi, H., Kohara, S., Kazahari, S., Shinohara, Y., Nakazawa, H. Brain Res. (2003) [Pubmed]
  9. Inhibition of guinea pig intestinal peristalsis by the flavonoids quercetin, naringenin, apigenin and genistein. Gharzouli, K., Holzer, P. Pharmacology (2004) [Pubmed]
  10. Enhancing effect of quercetin on 3-methylcholanthrene carcinogenesis in C57Bl/6 mice. Ishikawa, M., Oikawa, T., Hosokawa, M., Hamada, J., Morikawa, K., Kobayashi, H. Neoplasma (1985) [Pubmed]
  11. Microglia, apoptosis and interleukin-1beta expression in the effect of sophora japonica l. on cerebral infarct induced by ischemia-reperfusion in rats. Lao, C.J., Lin, J.G., Kuo, J.S., Chao, P.D., Cheng, C.Y., Tang, N.Y., Hsieh, C.L. Am. J. Chin. Med. (2005) [Pubmed]
  12. Structural determinants of phosphoinositide 3-kinase inhibition by wortmannin, LY294002, quercetin, myricetin, and staurosporine. Walker, E.H., Pacold, M.E., Perisic, O., Stephens, L., Hawkins, P.T., Wymann, M.P., Williams, R.L. Mol. Cell (2000) [Pubmed]
  13. Preferential inhibition by quercetin of mitogen-stimulated thymocyte glucose transport. Hume, D.A., Weidemann, M.J., Ferber, E. J. Natl. Cancer Inst. (1979) [Pubmed]
  14. Visualization of phosphoinositides that bind pleckstrin homology domains: calcium- and agonist-induced dynamic changes and relationship to myo-[3H]inositol-labeled phosphoinositide pools. Várnai, P., Balla, T. J. Cell Biol. (1998) [Pubmed]
  15. Anaerobic enzyme.substrate structures provide insight into the reaction mechanism of the copper-dependent quercetin 2,3-dioxygenase. Steiner, R.A., Kalk, K.H., Dijkstra, B.W. Proc. Natl. Acad. Sci. U.S.A. (2002) [Pubmed]
  16. In vitro secondary activation (memory effect) of avian vitellogenin II gene in isolated liver nuclei. Jost, J.P., Moncharmont, B., Jiricny, J., Saluz, H., Hertner, T. Proc. Natl. Acad. Sci. U.S.A. (1986) [Pubmed]
  17. Inhibition of polycyclic aromatic hydrocarbon-DNA adduct formation in epidermis and lungs of SENCAR mice by naturally occurring plant phenols. Das, M., Khan, W.A., Asokan, P., Bickers, D.R., Mukhtar, H. Cancer Res. (1987) [Pubmed]
  18. Quercetin mediates the down-regulation of mutant p53 in the human breast cancer cell line MDA-MB468. Avila, M.A., Velasco, J.A., Cansado, J., Notario, V. Cancer Res. (1994) [Pubmed]
  19. Effect of liposome-encapsulated quercetin on DNA synthesis, lactate production, and cyclic adenosine 3':5'-monophosphate level in Ehrlich ascites tumor cells. Podhajcer, O.L., Friedlander, M., Graziani, Y. Cancer Res. (1980) [Pubmed]
  20. Flavonoid inhibition of sodium-dependent vitamin C transporter 1 (SVCT1) and glucose transporter isoform 2 (GLUT2), intestinal transporters for vitamin C and Glucose. Song, J., Kwon, O., Chen, S., Daruwala, R., Eck, P., Park, J.B., Levine, M. J. Biol. Chem. (2002) [Pubmed]
  21. Effects of quercetin on magnesium-dependent adenosine triphosphatase and the metabolism of human polymorphonuclear leukocytes. Long, G.D., DeChatelet, L.R., O'Flaherty, J.T., McCall, C.E., Bass, D.A., Shirley, P.S., Parce, J.W. Blood (1981) [Pubmed]
  22. Induction of apoptosis by quercetin: involvement of heat shock protein. Wei, Y.Q., Zhao, X., Kariya, Y., Fukata, H., Teshigawara, K., Uchida, A. Cancer Res. (1994) [Pubmed]
  23. Quercetin arrests human leukemic T-cells in late G1 phase of the cell cycle. Yoshida, M., Yamamoto, M., Nikaido, T. Cancer Res. (1992) [Pubmed]
  24. Quercetin inhibits Ca2+ uptake but not Ca2+ release by sarcoplasmic reticulum in skinned muscle fibers. Shoshan, V., Campbell, K.P., MacLennan, D.H., Frodis, W., Britt, B.A. Proc. Natl. Acad. Sci. U.S.A. (1980) [Pubmed]
  25. Cell cycle analysis of p26-BCL-2 protein levels in proliferating lymphoma and leukemia cell lines. Reed, J.C., Tanaka, S., Cuddy, M. Cancer Res. (1992) [Pubmed]
  26. Quercetin, an inhibitor of lactate transport and a hyperthermic sensitizer of HeLa cells. Kim, J.H., Kim, S.H., Alfieri, A.A., Young, C.W. Cancer Res. (1984) [Pubmed]
  27. Inhibition of epidermal xenobiotic metabolism in SENCAR mice by naturally occurring plant phenols. Das, M., Mukhtar, H., Bik, D.P., Bickers, D.R. Cancer Res. (1987) [Pubmed]
  28. Quercetin protects human hepatocytes from ethanol-derived oxidative stress by inducing heme oxygenase-1 via the MAPK/Nrf2 pathways. Yao, P., Nussler, A., Liu, L., Hao, L., Song, F., Schirmeier, A., Nussler, N. J. Hepatol. (2007) [Pubmed]
  29. The flavonoid quercetin regulates growth and gene expression in rat FRTL-5 thyroid cells. Giuliani, C., Noguchi, Y., Harii, N., Napolitano, G., Tatone, D., Bucci, I., Piantelli, M., Monaco, F., Kohn, L.D. Endocrinology (2008) [Pubmed]
  30. St. John's wort extracts and some of their constituents potently inhibit ultimate carcinogen formation from benzo[a]pyrene-7,8-dihydrodiol by human CYP1A1. Schwarz, D., Kisselev, P., Roots, I. Cancer Res. (2003) [Pubmed]
  31. Survivin and p53 modulate quercetin-induced cell growth inhibition and apoptosis in human lung carcinoma cells. Kuo, P.C., Liu, H.F., Chao, J.I. J. Biol. Chem. (2004) [Pubmed]
  32. Modulation of pro-survival Akt/protein kinase B and ERK1/2 signaling cascades by quercetin and its in vivo metabolites underlie their action on neuronal viability. Spencer, J.P., Rice-Evans, C., Williams, R.J. J. Biol. Chem. (2003) [Pubmed]
  33. Liposomal quercetin efficiently suppresses growth of solid tumors in murine models. Yuan, Z.P., Chen, L.J., Fan, L.Y., Tang, M.H., Yang, G.L., Yang, H.S., Du, X.B., Wang, G.Q., Yao, W.X., Zhao, Q.M., Ye, B., Wang, R., Diao, P., Zhang, W., Wu, H.B., Zhao, X., Wei, Y.Q. Clin. Cancer Res. (2006) [Pubmed]
  34. Identification of quercetin 3-O-beta-D-glucuronide as an antioxidative metabolite in rat plasma after oral administration of quercetin. Moon, J.H., Tsushida, T., Nakahara, K., Terao, J. Free Radic. Biol. Med. (2001) [Pubmed]
 
WikiGenes - Universities