The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

N-ethylmaleimide-sensitive factor is required for the synaptic incorporation and removal of AMPA receptors during cerebellar long-term depression.

Cerebellar long-term depression (LTD) is a persistent attenuation of synaptic transmission at the parallel fiber-Purkinje cell synapse mediated by the removal of GluR2 subunit-containing alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors. The removal of AMPA receptors requires protein kinase C phosphorylation of the GluR2 subunit within its carboxyl-terminal PSD-95/Discs Large/Zona Occludens-1 (PDZ) ligand and binding of the PDZ domain-containing protein, PICK1. The sequence of the GluR2 subunit is similar to that of the GluR3 and GluR4c subunits, which also contain PDZ ligands and protein kinase C consensus sites. Although GluR3 and GluR4c are also expressed in Purkinje cells, we have previously shown that cerebellar LTD is absent in GluR2(-/-) mice, suggesting that these subunits are unable to substitute functionally for GluR2. Here, we examine the apparent difference in the regulation of these AMPA receptor subunits by attempting to rescue LTD in GluR2(-/-) Purkinje cells with WT and mutant GluR2 and GluR3 subunits. Our results show that the selective interaction of the GluR2 subunit with the N-ethylmaleimide-sensitive factor protein is required for synaptic, but not extrasynaptic, incorporation of AMPA receptors as well as for their competence to undergo LTD. In addition, perfusion of a synthetic peptide that acutely disrupts the interaction of GluR2 with N-ethylmaleimide-sensitive factor selectively depletes GluR2-containing receptors from synapses and occludes LTD. These findings demonstrate that interaction of AMPA receptors with N-ethylmaleimide-sensitive factor plays a critical role in incorporation of AMPA receptors into synapses and for their subsequent removal during cerebellar LTD.[1]

References

 
WikiGenes - Universities