The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Pyridoxamine lowers kidney crystals in experimental hyperoxaluria: a potential therapy for primary hyperoxaluria.

BACKGROUND: Primary hyperoxaluria is a rare genetic disorder of glyoxylate metabolism that results in overproduction of oxalate. The disease is characterized by severe calcium oxalate nephrolithiasis and nephrocalcinosis, resulting in end-stage renal disease (ESRD) early in life. Most patients eventually require dialysis and kidney transplantation, usually in combination with the replacement of the liver. Reduction of urinary oxalate levels can efficiently decrease calcium oxalate depositions; yet, no treatment is available that targets oxalate biosynthesis. In previous in vitro studies, we demonstrated that pyridoxamine can trap reactive carbonyl compounds, including intermediates of oxalate biosynthesis. METHODS: The effect of PM on urinary oxalate excretion and kidney crystal formation was determined using the ethylene glycol rat model of hyperoxaluria. Animals were given 0.75% to 0.8% ethylene glycol in drinking water to establish and maintain hyperoxaluria. After 2 weeks, pyridoxamine treatment (180 mg/day/kg body weight) started and continued for an additional 2 weeks. Urinary creatinine, glycolate, oxalate, and calcium were measured along with the microscopic analysis of kidney tissues for the presence of calcium oxalate crystals. RESULTS: Pyridoxamine treatment resulted in significantly lower (by approximately 50%) levels of urinary glycolate and oxalate excretion compared to untreated hyperoxaluric animals. This was accompanied by a significant reduction in calcium oxalate crystal formation in papillary and medullary areas of the kidney. CONCLUSION: These results, coupled with favorable toxicity profiles of pyridoxamine in humans, show promise for therapeutic use of pyridoxamine in primary hyperoxaluria and other kidney stone diseases.[1]


  1. Pyridoxamine lowers kidney crystals in experimental hyperoxaluria: a potential therapy for primary hyperoxaluria. Chetyrkin, S.V., Kim, D., Belmont, J.M., Scheinman, J.I., Hudson, B.G., Voziyan, P.A. Kidney Int. (2005) [Pubmed]
WikiGenes - Universities