The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Pharmacologic inhibitors of PI3K/Akt potentiate the apoptotic action of the antileukemic drug arsenic trioxide via glutathione depletion and increased peroxide accumulation in myeloid leukemia cells.

Treatment for 14 to 24 hours with low concentrations of arsenic trioxide (As2O3, 1-4 microM) caused apoptosis in U-937 promonocytes and other human myeloid leukemia cell lines (HL-60, NB4). This effect was potentiated by cotreatment with the phosphatidylinositol 3-kinase ( PI3K) inhibitors LY294002 and wortmannin, and the Akt inhibitor Akt(i)5. However, the inhibitors did not increase the toxicity of the mitochondria-targeting drug lonidamine, and the DNA-specific drugs camptothecin and cisplatin, when used under similar experimental conditions as As2O3. The potentiation of As2O3-provoked apoptosis involved the increased disruption of mitochondrial transmembrane potential, increased caspase-3 activation and cytochrome c release from mitochondria, increased Bax and Bid activation, and attenuation of 27-kDa heat shock protein ( HSP27) expression; the potentiation was prevented by Bcl-2 overexpression. The PI3K/Akt inhibitors decreased the intracellular glutathione content, and caused intracellular oxidation, as measured by peroxide accumulation. Cotreatment with subcytotoxic concentrations of hydrogen peroxide increased apoptosis induction by As2O3. On the other hand, the treatments did not significantly affect glutathione S-transferase pi expression and activity. These results, which indicate that glutathione is a target of PI3K/Akt in myeloid leukemia cells, may partially explain the selective increase of As2O3 toxicity by PI3K/Akt inhibitors, and may provide a rationale to improve the efficacy of these inhibitors as therapeutic agents.[1]


WikiGenes - Universities