The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Identification of cyanobacterial cell division genes by comparative and mutational analyses.

We performed comparative and mutational analyses to define more comprehensively the repertoire of genes involved in cyanobacterial cell division. Genes ftsE, ftsI, ftsQ, ftsW, and (previously recognized) ftsZ, minC, minD, minE and sulA were identified as homologues of cell division genes of Gram-negative and Gram-positive bacteria. Transposon mutagenesis of Synechococcus elongatus PCC 7942 identified five additional genes, cdv1, cdv2, cdv3, ftn6 and cikA, involved in cell division. cdv1 encodes a presumptive periplasmic peptidyl-prolyl cis-trans isomerase. cdv2 has similarity to ylmF which, like divIVA, lies within the Gram-positive bacterial ylm gene cluster whose members have functions associated with division. Conservation of other ylm genes in cyanobacteria suggests that cyanobacteria and Gram-positive bacteria share specific division proteins. Two ylm homologues are also found in algal and plant genomes. cdv3 has low but significant similarity to divIVA, suggesting that minE and cdv3 both mediate division-site determination in cyanobacteria. In contrast, Gram-positive bacteria lack minE, and (Gram-negative) proteobacteria lack divIVA. ftn6, of unknown function, and the circadian input kinase, cikA, are specific to cyanobacteria. In S. elongatus, unlike in other bacteria, FtsZ rings are formed at sites occupied by nucleoids. Thus, the division machinery of cyanobacteria differs in its composition and regulation from that of Gram-negative and Gram-positive bacteria.[1]

References

  1. Identification of cyanobacterial cell division genes by comparative and mutational analyses. Miyagishima, S.Y., Wolk, C.P., Osteryoung, K.W. Mol. Microbiol. (2005) [Pubmed]
 
WikiGenes - Universities