The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Synechococcus

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Synechococcus

  • The latter is similar to phycoerythrins (PE) from marine Synechococcus cyanobacteria and bind a phycourobilin-like pigment as the major chromophore [1].
  • A promoterless segment of the Vibrio harveyi luciferase structural genes (luxAB) was introduced downstream of the promoter for the Synechococcus psbAI gene, which encodes a photosystem II protein [2].
  • Using the cysA locus of Salmonella typhimurium as a heterologous probe, we have cloned a region of the Anacystis nidulans R2 (Synechococcus PCC 7942) genome involved in sulfate assimilation [3].
  • P-type ATPase from the cyanobacterium Synechococcus 7942 related to the human Menkes and Wilson disease gene products [4].
  • The large subunit core of ribulose-bisphosphate carboxylase from Synechococcus PCC 6301 expressed in Escherichia coli in the absence of its small subunits retains a trace of carboxylase activity (about 1% of the kcat of the holoenzyme) (Andrews, T. J (1988) J. Biol. Chem. 263, 12213-12219) [5].
 

High impact information on Synechococcus

  • The crystal structure of photosystem I from the thermophilic cyanobacterium Synechococcus elongatus described here provides a picture at atomic detail of 12 protein subunits and 127 cofactors comprising 96 chlorophylls, 2 phylloquinones, 3 Fe4S4 clusters, 22 carotenoids, 4 lipids, a putative Ca2+ ion and 201 water molecules [6].
  • A circadian clock gene cluster kaiABC was cloned from the cyanobacterium Synechococcus [7].
  • Solution structure of cytochrome c6 from the thermophilic cyanobacterium Synechococcus elongatus [8].
  • We isolated mutants affected in the circadian expression of the psbAI gene in Synechococcus sp. strain PCC 7942 using a strategy that tags the genomic locus responsible for the mutant phenotype [9].
  • We characterized the disrupted locus of the low amplitude but still rhythmic mutant (M16) as the rpoD2 gene, a member of a gene family that encodes sigma70-like transcription factors in Synechococcus [9].
 

Chemical compound and disease context of Synechococcus

  • In Synechococcus, mRNA levels of genes encoding proteins for nitrate and ammonium assimilation were observed to be negatively regulated by ammonium, and ammonium-regulated transcription start points were identified for those genes [10].
  • Among the low-CO(2)-inducible transcription units of Synechococcus sp. strain PCC 7942 is the cmpABCD operon, encoding an ATP-binding cassette transporter similar to the nitrate/nitrite transporter of the same cyanobacterium [11].
  • A chemically synthesized gene encoding human CuZn superoxide dismutase (hSOD) was cloned into the shuttle vector pBAX18R and expressed in Anacystis nidulans 6301 (Synechococcus sp. strain PCC 6301) under the control of a ribulose-1,5-bisphosphate carboxylase/oxygenase gene (rbc) promoter derived from A. nidulans 6301 [12].
  • Transcriptional activation of NtcA-dependent promoters of Synechococcus sp. PCC 7942 by 2-oxoglutarate in vitro [13].
  • Further gain-of-function experiments in the freshwater cyanobacterium Synechococcus PCC7942 revealed that bicA expression alone is sufficient to confer a Na(+)-dependent, HCO(3)(-) uptake activity [14].
 

Biological context of Synechococcus

 

Anatomical context of Synechococcus

 

Gene context of Synechococcus

 

Analytical, diagnostic and therapeutic context of Synechococcus

References

  1. Coexistence of phycoerythrin and a chlorophyll a/b antenna in a marine prokaryote. Hess, W.R., Partensky, F., van der Staay, G.W., Garcia-Fernandez, J.M., Börner, T., Vaulot, D. Proc. Natl. Acad. Sci. U.S.A. (1996) [Pubmed]
  2. Circadian rhythms in prokaryotes: luciferase as a reporter of circadian gene expression in cyanobacteria. Kondo, T., Strayer, C.A., Kulkarni, R.D., Taylor, W., Ishiura, M., Golden, S.S., Johnson, C.H. Proc. Natl. Acad. Sci. U.S.A. (1993) [Pubmed]
  3. A region of a cyanobacterial genome required for sulfate transport. Green, L.S., Laudenbach, D.E., Grossman, A.R. Proc. Natl. Acad. Sci. U.S.A. (1989) [Pubmed]
  4. P-type ATPase from the cyanobacterium Synechococcus 7942 related to the human Menkes and Wilson disease gene products. Phung, L.T., Ajlani, G., Haselkorn, R. Proc. Natl. Acad. Sci. U.S.A. (1994) [Pubmed]
  5. Side reactions catalyzed by ribulose-bisphosphate carboxylase in the presence and absence of small subunits. Morell, M.K., Wilkin, J.M., Kane, H.J., Andrews, T.J. J. Biol. Chem. (1997) [Pubmed]
  6. Three-dimensional structure of cyanobacterial photosystem I at 2.5 A resolution. Jordan, P., Fromme, P., Witt, H.T., Klukas, O., Saenger, W., Krauss, N. Nature (2001) [Pubmed]
  7. Expression of a gene cluster kaiABC as a circadian feedback process in cyanobacteria. Ishiura, M., Kutsuna, S., Aoki, S., Iwasaki, H., Andersson, C.R., Tanabe, A., Golden, S.S., Johnson, C.H., Kondo, T. Science (1998) [Pubmed]
  8. Solution structure of cytochrome c6 from the thermophilic cyanobacterium Synechococcus elongatus. Beissinger, M., Sticht, H., Sutter, M., Ejchart, A., Haehnel, W., Rösch, P. EMBO J. (1998) [Pubmed]
  9. A sigma factor that modifies the circadian expression of a subset of genes in cyanobacteria. Tsinoremas, N.F., Ishiura, M., Kondo, T., Andersson, C.R., Tanaka, K., Takahashi, H., Johnson, C.H., Golden, S.S. EMBO J. (1996) [Pubmed]
  10. Molecular mechanism for the operation of nitrogen control in cyanobacteria. Luque, I., Flores, E., Herrero, A. EMBO J. (1994) [Pubmed]
  11. Identification of an ATP-binding cassette transporter involved in bicarbonate uptake in the cyanobacterium Synechococcus sp. strain PCC 7942. Omata, T., Price, G.D., Badger, M.R., Okamura, M., Gohta, S., Ogawa, T. Proc. Natl. Acad. Sci. U.S.A. (1999) [Pubmed]
  12. High-level expression of human superoxide dismutase in the cyanobacterium Anacystis nidulans 6301. Takeshima, Y., Takatsugu, N., Sugiura, M., Hagiwara, H. Proc. Natl. Acad. Sci. U.S.A. (1994) [Pubmed]
  13. Transcriptional activation of NtcA-dependent promoters of Synechococcus sp. PCC 7942 by 2-oxoglutarate in vitro. Tanigawa, R., Shirokane, M., Maeda Si, S., Omata, T., Tanaka, K., Takahashi, H. Proc. Natl. Acad. Sci. U.S.A. (2002) [Pubmed]
  14. Identification of a SulP-type bicarbonate transporter in marine cyanobacteria. Price, G.D., Woodger, F.J., Badger, M.R., Howitt, S.M., Tucker, L. Proc. Natl. Acad. Sci. U.S.A. (2004) [Pubmed]
  15. Electron transport regulates exchange of two forms of photosystem II D1 protein in the cyanobacterium Synechococcus. Campbell, D., Zhou, G., Gustafsson, P., Oquist, G., Clarke, A.K. EMBO J. (1995) [Pubmed]
  16. Molecular structure and enzymatic function of lycopene cyclase from the cyanobacterium Synechococcus sp strain PCC7942. Cunningham, F.X., Sun, Z., Chamovitz, D., Hirschberg, J., Gantt, E. Plant Cell (1994) [Pubmed]
  17. Overexpression of a Na+/H+ antiporter confers salt tolerance on a freshwater cyanobacterium, making it capable of growth in sea water. Waditee, R., Hibino, T., Nakamura, T., Incharoensakdi, A., Takabe, T. Proc. Natl. Acad. Sci. U.S.A. (2002) [Pubmed]
  18. The DpsA protein of Synechococcus sp. Strain PCC7942 is a DNA-binding hemoprotein. Linkage of the Dps and bacterioferritin protein families. Peña, M.M., Bullerjahn, G.S. J. Biol. Chem. (1995) [Pubmed]
  19. Characterization of a cyanobacterial photosystem I complex. Lundell, D.J., Glazer, A.N., Melis, A., Malkin, R. J. Biol. Chem. (1985) [Pubmed]
  20. Stoichiometric association of extrinsic cytochrome c550 and 12 kDa protein with a highly purified oxygen-evolving photosystem II core complex from Synechococcus vulcanus. Shen, J.R., Ikeuchi, M., Inoue, Y. FEBS Lett. (1992) [Pubmed]
  21. Electron paramagnetic resonance-detectable Cu2+ in Synechococcus 6301 and 6311: aa3-type cytochrome-c oxidase of cytoplasmic membrane. Fry, I.V., Peschek, G.A. Meth. Enzymol. (1988) [Pubmed]
  22. Catechol stimulation of ferricyanide Hill reaction by spheroplasts of cyanobacterium, Synechococcus cedrorum: effect of temperature on catechol-stimulated oxygen evolution. Wavare, R.A., Prusti, R.K., Mohanty, P. Indian J. Biochem. Biophys. (1989) [Pubmed]
  23. Cytochrome c-553 is not required for photosynthetic activity in the cyanobacterium Synechococcus. Laudenbach, D.E., Herbert, S.K., McDowell, C., Fork, D.C., Grossman, A.R., Straus, N.A. Plant Cell (1990) [Pubmed]
  24. An abundant cell-surface polypeptide is required for swimming by the nonflagellated marine cyanobacterium Synechococcus. Brahamsha, B. Proc. Natl. Acad. Sci. U.S.A. (1996) [Pubmed]
  25. Structure and function from the circadian clock protein KaiA of Synechococcus elongatus: a potential clock input mechanism. Williams, S.B., Vakonakis, I., Golden, S.S., LiWang, A.C. Proc. Natl. Acad. Sci. U.S.A. (2002) [Pubmed]
  26. Nucleotide binding and autophosphorylation of the clock protein KaiC as a circadian timing process of cyanobacteria. Nishiwaki, T., Iwasaki, H., Ishiura, M., Kondo, T. Proc. Natl. Acad. Sci. U.S.A. (2000) [Pubmed]
  27. Role of KaiC phosphorylation in the circadian clock system of Synechococcus elongatus PCC 7942. Nishiwaki, T., Satomi, Y., Nakajima, M., Lee, C., Kiyohara, R., Kageyama, H., Kitayama, Y., Temamoto, M., Yamaguchi, A., Hijikata, A., Go, M., Iwasaki, H., Takao, T., Kondo, T. Proc. Natl. Acad. Sci. U.S.A. (2004) [Pubmed]
  28. Metalloregulation of the cyanobacterial smt locus: identification of SmtB binding sites and direct interaction with metals. Erbe, J.L., Taylor, K.B., Hall, L.M. Nucleic Acids Res. (1995) [Pubmed]
  29. Cloning and sequence analysis of the glucose-6-phosphate dehydrogenase gene from the cyanobacterium Synechococcus PCC 7942. Scanlan, D.J., Newman, J., Sebaihia, M., Mann, N.H., Carr, N.G. Plant Mol. Biol. (1992) [Pubmed]
  30. Molecular cloning and disruption of a novel gene encoding UDP-glucose: tetrahydrobiopterin alpha-glucosyltransferase in the cyanobacterium Synechococcus sp. PCC 7942. Choi, Y.K., Hwang, Y.K., Park, Y.S. FEBS Lett. (2001) [Pubmed]
  31. Regulation, unique gene organization, and unusual primary structure of carbon fixation genes from a marine phycoerythrin-containing cyanobacterium. Watson, G.M., Tabita, F.R. Plant Mol. Biol. (1996) [Pubmed]
 
WikiGenes - Universities