Profile of changes in gene expression in cultured hippocampal neurones evoked by the GABAB receptor agonist baclofen.
Metabotropic gamma-aminobutyric acid receptors (GABA(B)Rs) play a critical role in inhibitory synaptic transmission in the hippocampus. However, little is known about a possible long-term effect requiring transcriptional changes. Here, using microarray technology and RT-PCR of RNA from cultured rat embryonic hippocampal neurones, we report the profile of genes that are up- or downregulated by activation of GABA(B)Rs by baclofen but are not changed by baclofen in the presence of the GABA(B)R antagonist CGP-55845A. Our data show, for the first time, regulation of transcription of defined mRNAs after specific GABA(B) receptor activation. The identified genes can be grouped into those encoding signal transduction, endocytosis/trafficking, and structural classes of proteins. For example, butyrylcholinesterase, brain-derived neurotrophic factor, and COPS5 (Jab1) genes were upregulated, whereas Rab8 interacting protein and Rho GTPase-activating protein 4 were downregulated. These results provide important baseline genomic data for future studies aimed at investigating the long-term effects of GABA(B)R activation in neurones such as their roles in neuronal growth, pathway formation and stabilization, and synaptic plasticity.[1]References
- Profile of changes in gene expression in cultured hippocampal neurones evoked by the GABAB receptor agonist baclofen. Ghorbel, M.T., Becker, K.G., Henley, J.M. Physiol. Genomics (2005) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg