The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Involvement of Ca2+ signaling in tachykinin-mediated contractile responses in swine trachea.

Neuropeptide tachykinins, present within sensory nerves, have been implicated as neurotransmitters involved in nonadrenergic and noncholinergic airway muscle contraction. The signal transduction pathways of tachykinins on muscle contraction and Ca2+ mobilization were investigated in swine trachea. Tachykinins, substance P (SP) and neurokinin A (NKA), concentration (1 nM to 1 microM)-dependently induced contractile responses with removal of epithelium, whereas neurokinin B (NKB) did not alter the muscle tension. The SP- and NKA-evoked muscle contractions were inhibited by NK1-R antagonist L732138, but not by either NK2-R antagonist MDL29913 or NK3-R antagonist SB218795. Consistently, SP-elicited increase in [Ca2+]i was abolished by NK1-R antagonist, neither by NK2-R nor NK3-R antagonists. The SP-induced muscular responses were significantly inhibited by L-type Ca2+ channel blocker verapamil and withdrawal of external Ca2+. Caffeine (10 mM) or ryanodine (50 microM) also partly suppressed the SP-induced muscle responses. Inhibition of inositol 1,4,5-trisphosphate (InsP3) receptor with 2-APB (75 microM) potently attenuated SP-evoked Ca2+ mobilization and muscle contraction, which was further inhibited by 2-APB under Ca2+-free external solution, but not completely. Unexpectedly, simultaneous blockade of InsP3 receptor and ryanodine receptor ( RyR) by 2-APB and ryanodine enhanced SP-evoked muscle contraction and Ca2+ mobilization. This potentiation was virtually abolished by removal of external Ca2+, suggesting native Ca2+ channels may contribute to this phenomenon. These results demonstrate that tachykinins produce a potent muscle contraction associated with Ca2+ mobilization via tachykinin NK1- R-dependent activation of multiple signal transduction pathways involving Ca2+ influx and release of Ca2+ from InsP3- and ryanodine-sensitive Ca2+ stores. Blockade of both InsP3 receptor and RyR enhances the Ca2+ influx through native Ca2+ channels in plasma membrane, which is crucial to Ca2+ signaling in response to NK1 receptor activation.[1]


WikiGenes - Universities