The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

The human RNA surveillance factor UPF1 is required for S phase progression and genome stability.

The eukaryotic nonsense-mediated mRNA decay (NMD) pathway degrades mRNAs carrying premature stop codons (PTC). In humans, NMD depends on the RNA- and DNA-dependent 5'-3' helicase UPF1 and six other gene products referred to as SMG1, UPF2, UPF3, EST1A/SMG6, EST1B/SMG5, and EST1C/SMG7. The NMD machinery is also thought to coordinate mRNA nuclear export and translation and to regulate the levels of several physiologic transcripts. Furthermore, in a process named SMD, UPF1 promotes degradation of mRNAs that are bound by Staufen 1. Intriguingly, SMG1 and EST1A/SMG6 function also in DNA repair and telomere maintenance, respectively. Here, we show that UPF1 is also required for genome stability. shRNA- mediated depletion of UPF1 causes human cells to arrest early in S phase, inducing an ATR-dependent DNA-damage response. A fraction of hyperphosphorylated UPF1 associates with chromatin of unperturbed cells, and chromatin association increases in S phase and upon gamma irradiation. ATR phosphorylates UPF1 both in vitro and in vivo, and shRNA-mediated downregulation of ATR diminished the association of UPF1 with chromatin, although it did not affect NMD. Physical interaction of UPF1 with DNA polymerase delta suggests a role for human UPF1 in DNA synthesis during replication or repair.[1]

References

 
WikiGenes - Universities