The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Restoration of SHIP-1 activity in human leukemic cells modifies NF-kappaB activation pathway and cellular survival upon oxidative stress.

Nuclear factor-kappa B (NF-kappaB) is an important prosurvival transcription factor activated in response to a large array of external stimuli, including reactive oxygen species (ROS). Previous works have shown that NF-kappaB activation by ROS involved tyrosine phosphorylation of the inhibitor IkappaBalpha through an IkappaB kinase (IKK)-independent mechanism. In the present work, we investigated with more details NF-kappaB redox regulation in human leukemic cells. By using different cell lines (CEM, Jurkat and the subclone Jurkat JR), we clearly showed that NF-kappaB activation by hydrogen peroxide (H2O2) is cell-type dependent: it activates NF-kappaB through tyrosine phosphorylation of IkappaBalpha in Jurkat cells, whereas it induces an IKK-mediated IkappaBalpha phosphorylation on S32 and 36 in CEM and Jurkat JR cells. We showed that this H2O2-induced IKK activation in CEM and Jurkat JR cells is mediated by SH2-containing inositol 5'-phosphatase 1 (SHIP-1), a lipid phosphatase that is absent in Jurkat cells. Indeed, the complementation of SHIP-1 in Jurkat cells made them shift to an IKK-dependent mechanism upon oxidative stress stimulation. We also showed that Jurkat cells expressing SHIP-1 are more resistant to H2O2-induced apoptosis than the parental cells, suggesting that SHIP-1 has an important role in leukemic cell responses to ROS in terms of signal transduction pathways and apoptosis resistance, which can be of interest in improving ROS-mediated chemotherapies.[1]

References

  1. Restoration of SHIP-1 activity in human leukemic cells modifies NF-kappaB activation pathway and cellular survival upon oxidative stress. Gloire, G., Charlier, E., Rahmouni, S., Volanti, C., Chariot, A., Erneux, C., Piette, J. Oncogene (2006) [Pubmed]
 
WikiGenes - Universities