The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Effects of fluoride-modified titanium surfaces on osteoblast proliferation and gene expression.

PURPOSE: The objective of this study was to test the hypothesis that fluoride-modified titanium surfaces would enhance osteoblast differentiation. Osteoblast growth on a moderately rough etched fluoride-modified titanium surface (alteration in cellular differentiation) was compared to osteoblast growth on the same surface grit-blasted with titanium dioxide. The potential role of nanometer-level alterations on cell shape and subsequent differentiation was then compared. MATERIALS AND METHODS: Human embryonic palatal mesenchymal (HEPM) cultures were incubated on the respective surfaces for 1, 3, and 7 days, followed by analysis for cell proliferation, alkaline phosphatase (ALP) -specific activity, and mRNA steady-state expression for bone-related genes (ALP, type I collagen, osteocalcin, bone sialoprotein [BSP] II, Cbfa1, and osterix) by real-time polymerase chain reaction (PCR). RESULTS: The different surfaces did not alter the mRNA expression for ALP, type I collagen, osterix, osteocalcin, or BSP II. However, Cbfa1 expression on the fluoride-modified titanium surface was significantly higher (P < .001) at 1 week. The number of cells on this surface was 20% lower than the number of cells on the surface TiO2-blasted with 25-microm particles but not significantly different from the number of cells on the surface TiO2-blasted with 125-microm particles. Cells grown on all the titanium surfaces expressed similar levels of ALP activity. CONCLUSIONS: The results indicated that a fluoride-modified surface topography, in synergy with surface roughness, may have a greater influence on the level of expression of Cbfa1 (a key regulator for osteogenesis) than the unmodified titanium surfaces studied.[1]

References

  1. Effects of fluoride-modified titanium surfaces on osteoblast proliferation and gene expression. Isa, Z.M., Schneider, G.B., Zaharias, R., Seabold, D., Stanford, C.M. The International journal of oral & maxillofacial implants. (2006) [Pubmed]
 
WikiGenes - Universities