The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Bifunctional role of the leishmanial antimonate reductase LmACR2 as a protein tyrosine phosphatase.

LmACR2 is the first identified antimonate reductase responsible for the reduction of pentavalent antimony in pentostam to the active trivalent form of the drug in Leishmania. LmACR2 is a homologue of the yeast arsenate reductase Acr2p and Cdc25 phosphatases and has the HC[X]5R phosphatase motif. Purified LmACR2 exhibited phosphatase activity in vitro and was able to dephosphorylate a phosphotyrosine residue from a synthetic peptide. This phosphatase activity was inhibited by classical inhibitors such as orthovanadate. LmACR2-catalyzed phosphatase activity was inhibited by either antimonate or arsenate. Site-directed mutagenesis experiments showed that the H74C[X]5R81 motif was involved in catalysis. This is the first report of a metalloid reductase with a bifunctional role in protein tyrosine phosphatase activity. Leishmania is never exposed to metalloids during its life cycle. It is therefore unlikely that it would evolve an enzyme exclusively for drug activation. We propose that the physiological function of LmACR2 is to dephosphorylate phosphotyrosine residues in leishmanial proteins.[1]


  1. Bifunctional role of the leishmanial antimonate reductase LmACR2 as a protein tyrosine phosphatase. Zhou, Y., Bhattacharjee, H., Mukhopadhyay, R. Mol. Biochem. Parasitol. (2006) [Pubmed]
WikiGenes - Universities