The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Secreted Frizzled Related Protein 2 (sFRP2) Decreases Susceptibility to UV-Induced Apoptosis in Primary Culture of Canine Mammary Gland Tumors by NF-kappaB Activation or JNK Suppression.

Tumor formation can result from a decrease in cell death, as well as an increase in cell proliferation. In spite of the high incidence of mammary gland tumors (MGTs) in female dogs, the understanding of its etiology is still poor. Consistent with several proto-oncogenes (such as Wnt) for the mammary gland, sFRP2 is expressed in canine MGTs which is normally silent in the mammary gland. To elucidate the roles of SFRP2 in the tumorigenesis of MGTs, apoptosis regulation mediated by sFRP2 was investigated by overexpression of sFRP2 in MGT cells. DNA fragmentation and TUNEL assays showed a decreased susceptibility of the cells to UV-induced apoptosis in the context of sFRP2 overexpression. To analyze the pathways through which sFRP2 transduces anti-apoptosis signals, multiple-color immunofluorescence staining, immunoprecipitation, and immunoblotting were carried out. sFRP2 was found co-localized in the extracellular matrix of MGTs and the tyrosine phosphorylation of FAK was enhanced. Moreover, JNK was suppressed and NF-kB was activated in the cells expressing sFRP2 after UV-induced apoptosis analyzed by immunoblotting and electrophoretic mobility shift assay (EMSA). Taken together, these results suggest that sFRP2 exerts its anti-apoptotic function in mammary cancer cells through NF-kappaB activation or JNK suppression.[1]

References

 
WikiGenes - Universities