The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Effect of drug transporter genes on cysteine export and overproduction in Escherichia coli.

L-cysteine is an important amino acid in terms of its industrial applications. We previously found a marked production of L-cysteine from glucose in recombinant Escherichia coli cells expressing an altered cysE gene encoding feedback inhibition-insensitive serine acetyltransferase. Also, a lower level of cysteine desulfhydrase (CD) activity, which is involved in L-cysteine degradation, increased L-cysteine productivity in E. coli. The use of an L-cysteine efflux system could be promising for breeding L-cysteine overproducers. In addition to YdeD and YfiK, which have been reported previously as L-cysteine exporter proteins in E. coli, we analyzed the effects of 33 putative drug transporter genes in E. coli on L-cysteine export and overproduction. Overexpression of the acrD, acrEF, bcr, cusA, emrAB, emrKY, ybjYZ, and yojIH genes reversed the growth inhibition of tnaA (the major CD gene)-disrupted E. coli cells by L-cysteine. We also found that overexpression of these eight genes reduces intracellular L-cysteine levels after cultivation in the presence of L-cysteine. Amino acid transport assays showed that Bcr overexpression conferring bicyclomycin and tetracycline resistance specifically promotes L-cysteine export driven by energy derived from the proton gradient. When a tnaA-disrupted E. coli strain expressing the altered cysE gene was transformed with a plasmid carrying the bcr gene, the transformant exhibited more L-cysteine production than cells carrying the vector only. A reporter gene assay suggested that the bcr gene is constitutively expressed at a substantial level. These results indicate that the multidrug transporter Bcr in the major facilitator family is involved in L-cysteine export and overproduction in genetically engineered E. coli cells.[1]


  1. Effect of drug transporter genes on cysteine export and overproduction in Escherichia coli. Yamada, S., Awano, N., Inubushi, K., Maeda, E., Nakamori, S., Nishino, K., Yamaguchi, A., Takagi, H. Appl. Environ. Microbiol. (2006) [Pubmed]
WikiGenes - Universities