The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Usher syndrome: molecular links of pathogenesis, proteins and pathways.

Usher syndrome is the most common form of deaf-blindness. The syndrome is both clinically and genetically heterogeneous, and to date, eight causative genes have been identified. The proteins encoded by these genes are part of a dynamic protein complex that is present in hair cells of the inner ear and in photoreceptor cells of the retina. The localization of the Usher proteins and the phenotype in animal models indicate that the Usher protein complex is essential in the morphogenesis of the stereocilia bundle in hair cells and in the calycal processes of photoreceptor cells. In addition, the Usher proteins are important in the synaptic processes of both cell types. The association of other proteins with the complex indicates functional links to a number of basic cell-biological processes. Prominently present is the connection to the dynamics of the actin cytoskeleton, involved in cellular morphology, cell polarity and cell-cell interactions. The Usher protein complex can also be linked to the cadherins/catenins in the adherens junction-associated protein complexes, suggesting a role in cell polarity and tissue organization. A third link can be established to the integrin transmembrane signaling network. The Usher interactome, as outlined in this review, participates in pathways common in inner ear and retina that are disrupted in the Usher syndrome.[1]


  1. Usher syndrome: molecular links of pathogenesis, proteins and pathways. Kremer, H., van Wijk, E., Märker, T., Wolfrum, U., Roepman, R. Hum. Mol. Genet. (2006) [Pubmed]
WikiGenes - Universities