The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Resistance to Nitric Oxide-induced Necrosis in Heme Oxygenase-1 Overexpressing Pulmonary Epithelial Cells Associated with Decreased Lipid Peroxidation.

Increased expression of heme oxygenase-1 (HO-1) increases NO resistance in several cell types, although the biochemical mechanism for this protection is unknown. To address this issue, we have measured different molecular markers of nitrosative stress in three stably transfected cell lines derived from the human lung epithelial line A549: two lines that overexpress rat HO-1 (L1 and A4), and a control line with the empty vector (Neo). Compared with the control Neo cells, L1 and A4 cells had, respectively, 5.8- and 3.8-fold greater HO activity accompanied by increased resistance to NO-induced necrosis. Compared with the Neo control, the HO-1-overexpressing cells also showed significantly less lipid peroxide formation and decreased perturbation of transition metal oxidation and coordination states following a cytotoxic NO exposure. These effects were blocked by the HO-1 inhibitors Zn- and Sn-protoporphyrin IX. In contrast, HO-1 overexpression did not significantly affect total reactive oxygen or nitrogen species, the levels of the nucleobase deamination products in DNA (xanthine, inosine, and uracil) following NO exposure, or NO-induced protein nitration. While increased HO-1 activity prevented NO-induced fluctuations in transition metal homeostasis, addition of an iron chelator decreased NO toxicity only slightly. Our results indicate that lipid peroxidation is a significant cause of NO-induced necrosis in human lung epithelial cells, and that the increased NO survival of L1 cells is due at least in part to decreased lipid peroxidation mediated by HO-1-generated biliverdin or bilirubin.[1]


WikiGenes - Universities