The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

A bacterial arginine-agmatine exchange transporter involved in extreme Acid resistance.

The arginine-dependent extreme acid resistance response of Escherichia coli operates by decarboxylating arginine. AdiC, a membrane antiporter, catalyzes arginine influx coupled to efflux of the decarboxylation product agmatine, effectively exporting a proton in each turnover. Using the adiC coding sequence under control of a tetracycline promoter in an E. coli vector, we expressed and purified the transport-protein with a yield of approximately 10 mg/liter bacterial culture. Glutaraldehyde cross-linking experiments indicate that the protein is a homodimer in detergent micelles and lipid membranes. Purified AdiC reconstituted into liposomes exchanges arginine and agmatine in a strictly coupled, electrogenic fashion. Kinetic analysis yields K(m) approximately 80 mum for Arg, in the same range as its dissociation constant determined by isothermal titration calorimetry.[1]

References

  1. A bacterial arginine-agmatine exchange transporter involved in extreme Acid resistance. Fang, Y., Kolmakova-Partensky, L., Miller, C. J. Biol. Chem. (2007) [Pubmed]
 
WikiGenes - Universities