The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Complexing of toxic hydrolysable tannins of yellow-wood (Terminalia oblongata) and harendong (Clidemia hirta) with reactive substances: an approach to preventing toxicity.

Ruminants consuming either tannic acid or hydrolysable tannins from the Australian yellow-wood tree (Terminalia oblongata) and the Indonesian shrub Clidemia hirta are intoxicated by simple phenolics liberated in the gut. The affinity of these tannins and of the simple phenolic gallic acid for the two proteins casein and pepsin, polyvinylpyrolidone (PVP), activated charcoal and Ca(OH)2 was examined in vitro. The studies were undertaken to predict the effect of these phenolics on digestion and to identify substances that would act as antidotes by precipitating phenolics. Tannins but not gallic acid were precipitated as stable complexes with both pepsin and casein at pH 3-5. Optimal complexing of tannin with protein occurred at a weight ratio of 1:1. Ionic strength and temperature did not affect the amount of tannin precipitated from solution with protein. The precipitation of tannins with PVP and Ca(OH)2 was unaffected by pH within the range 2-8 while maximum binding with activated charcoal occurred between pH 3 and 7. In contrast to protein, the other substances complexed with gallic acid; only gallic acid-PVP complexes were affected by pH. Calcium hydroxide bound more tannin and gallic acid on a weight basis than PVP and charcoal. Both Ca(OH)2 and activated charcoal should complex with phenolics in the forestomach, abomasum and intestines. The reaction of hydrolysable tannins and proteins at the pH found in the abomasum suggests that hydrolysable tannins would interfere with enzyme function and protein digestion post-ruminally rather than in the forestomach.[1]


WikiGenes - Universities