The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

Gallic acid     3,4,5-trihydroxybenzoic acid

Synonyms: gallate, GALLICACID, GALOP, SPECTRUM210369, CPD-183, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Gallic acid

 

Psychiatry related information on Gallic acid

 

High impact information on Gallic acid

  • Inhibitors of the octadecanoid pathway, salicylic acid and n-propyl gallate, strongly suppressed the wound activation of the FAD7 promoter in roots but not in leaves or stems [7].
  • Topical applications of caffeine or (-)-epigallocatechin gallate (EGCG) inhibit carcinogenesis and selectively increase apoptosis in UVB-induced skin tumors in mice [8].
  • (-)-epigallocatechin gallate overcomes resistance to Etoposide-induced cell death by targeting the molecular chaperone glucose-regulated protein 78 [9].
  • A naturally occurring gallated polyphenol isolated from green tea leaves, (-)-epigallocatechin gallate (EGCG), has been shown to be an inhibitor of dihydrofolate reductase (DHFR) activity in vitro at concentrations found in the serum and tissues of green tea drinkers (0.1-1.0 micromol/L) [10].
  • In this study we present clear in vitro and in vivo evidence that the inhibition of the cancer-associated enzyme telomerase is a key mechanism involved in cancer inhibition by epigallocatechin gallate (EGCG), a major tea polyphenol [11].
 

Chemical compound and disease context of Gallic acid

 

Biological context of Gallic acid

 

Anatomical context of Gallic acid

 

Associations of Gallic acid with other chemical compounds

 

Gene context of Gallic acid

  • Among the catechins, both the galloyl structure on the B ring and the gallate moiety contributed to the growth inhibition and AP-1 activity; the galloyl structure appeared to have a stronger effect on the inhibitory action than the gallate moiety [28].
  • PURPOSE: (-)-Epigallocatechin gallate (EGCG) inhibits activation of the epidermal growth factor receptor (EGFR) and human epidermal growth factor receptor-2 (HER2) and multiple downstream signaling pathways in cancer cell lines [29].
  • Inhibitory effect of green tea (-)-epigallocatechin gallate on resistin gene expression in 3T3-L1 adipocytes depends on the ERK pathway [30].
  • Antimitogenic effect of green tea (-)-epigallocatechin gallate on 3T3-L1 preadipocytes depends on the ERK and Cdk2 pathways [31].
  • In the present study, we investigated the effect of (-)-epigallocatechin gallate (EGCG), one of the major flavonoids containing in green tea, on ET-1-induced IL-6 synthesis in osteoblasts and the underlying mechanism [32].
 

Analytical, diagnostic and therapeutic context of Gallic acid

References

  1. Induction of mouse lung adenomas by amines or ureas plus nitrite and by N-nitroso compounds: effect of ascorbate, gallic acid, thiocyanate, and caffeine. Mirvish, S.S., Cardesa, A., Wallcave, L., Shubik, P. J. Natl. Cancer Inst. (1975) [Pubmed]
  2. Synergistic effects of (--)-epigallocatechin gallate with (--)-epicatechin, sulindac, or tamoxifen on cancer-preventive activity in the human lung cancer cell line PC-9. Suganuma, M., Okabe, S., Kai, Y., Sueoka, N., Sueoka, E., Fujiki, H. Cancer Res. (1999) [Pubmed]
  3. Green tea polyphenol epigallocatechin-3 gallate inhibits Her-2/neu signaling, proliferation, and transformed phenotype of breast cancer cells. Pianetti, S., Guo, S., Kavanagh, K.T., Sonenshein, G.E. Cancer Res. (2002) [Pubmed]
  4. O-methylated catechins from tea leaves inhibit multiple protein kinases in mast cells. Maeda-Yamamoto, M., Inagaki, N., Kitaura, J., Chikumoto, T., Kawahara, H., Kawakami, Y., Sano, M., Miyase, T., Tachibana, H., Nagai, H., Kawakami, T. J. Immunol. (2004) [Pubmed]
  5. Molecular characterization of the gallate dioxygenase from Pseudomonas putida KT2440. The prototype of a new subgroup of extradiol dioxygenases. Nogales, J., Canales, A., Jiménez-Barbero, J., García, J.L., Díaz, E. J. Biol. Chem. (2005) [Pubmed]
  6. Effects of two plant secondary metabolites, cineole and gallic acid, on nightly feeding patterns of the common brushtail possum. Wiggins, N.L., McArthur, C., McLean, S., Boyle, R. J. Chem. Ecol. (2003) [Pubmed]
  7. Wounding changes the spatial expression pattern of the arabidopsis plastid omega-3 fatty acid desaturase gene (FAD7) through different signal transduction pathways. Nishiuchi, T., Hamada, T., Kodama, H., Iba, K. Plant Cell (1997) [Pubmed]
  8. Topical applications of caffeine or (-)-epigallocatechin gallate (EGCG) inhibit carcinogenesis and selectively increase apoptosis in UVB-induced skin tumors in mice. Lu, Y.P., Lou, Y.R., Xie, J.G., Peng, Q.Y., Liao, J., Yang, C.S., Huang, M.T., Conney, A.H. Proc. Natl. Acad. Sci. U.S.A. (2002) [Pubmed]
  9. (-)-epigallocatechin gallate overcomes resistance to Etoposide-induced cell death by targeting the molecular chaperone glucose-regulated protein 78. Ermakova, S.P., Kang, B.S., Choi, B.Y., Choi, H.S., Schuster, T.F., Ma, W.Y., Bode, A.M., Dong, Z. Cancer Res. (2006) [Pubmed]
  10. The antifolate activity of tea catechins. Navarro-Perán, E., Cabezas-Herrera, J., García-Cánovas, F., Durrant, M.C., Thorneley, R.N., Rodríguez-López, J.N. Cancer Res. (2005) [Pubmed]
  11. Blocking telomerase by dietary polyphenols is a major mechanism for limiting the growth of human cancer cells in vitro and in vivo. Naasani, I., Oh-Hashi, F., Oh-Hara, T., Feng, W.Y., Johnston, J., Chan, K., Tsuruo, T. Cancer Res. (2003) [Pubmed]
  12. Polyhydroxybenzoates inhibit ascorbic acid activation of mitochondrial glycerol-3-phosphate dehydrogenase: implications for glucose metabolism and insulin secretion. Wells, W.W., Xu, D.P., Washburn, M.P., Cirrito, H.K., Olson, L.K. J. Biol. Chem. (2001) [Pubmed]
  13. Epigallocatechin gallate, the main polyphenol in green tea, binds to the T-cell receptor, CD4: Potential for HIV-1 therapy. Williamson, M.P., McCormick, T.G., Nance, C.L., Shearer, W.T. J. Allergy Clin. Immunol. (2006) [Pubmed]
  14. Epigallocatechin gallate synergistically enhances the activity of carbapenems against methicillin-resistant Staphylococcus aureus. Hu, Z.Q., Zhao, W.H., Asano, N., Yoda, Y., Hara, Y., Shimamura, T. Antimicrob. Agents Chemother. (2002) [Pubmed]
  15. Green tea catechins inhibit vascular endothelial growth factor receptor phosphorylation. Lamy, S., Gingras, D., Béliveau, R. Cancer Res. (2002) [Pubmed]
  16. Differential effects of theaflavin monogallates on cell growth, apoptosis, and Cox-2 gene expression in cancerous versus normal cells. Lu, J., Ho, C.T., Ghai, G., Chen, K.Y. Cancer Res. (2000) [Pubmed]
  17. Regulation of gene transcription by botanicals: novel regulatory mechanisms. Shay, N.F., Banz, W.J. Annu. Rev. Nutr. (2005) [Pubmed]
  18. Effects of epicatechin gallate on wound healing and scar formation in a full thickness incisional wound healing model in rats. Kapoor, M., Howard, R., Hall, I., Appleton, I. Am. J. Pathol. (2004) [Pubmed]
  19. Antioxidant capacity of flavanols and gallate esters: pulse radiolysis studies. Bors, W., Michel, C. Free Radic. Biol. Med. (1999) [Pubmed]
  20. Epigallocathechin-3 gallate selectively inhibits the PDGF-BB-induced intracellular signaling transduction pathway in vascular smooth muscle cells and inhibits transformation of sis-transfected NIH 3T3 fibroblasts and human glioblastoma cells (A172). Ahn, H.Y., Hadizadeh, K.R., Seul, C., Yun, Y.P., Vetter, H., Sachinidis, A. Mol. Biol. Cell (1999) [Pubmed]
  21. Metabolism and cytotoxicity of propyl gallate in isolated rat hepatocytes: effects of a thiol reductant and an esterase inhibitor. Nakagawa, Y., Nakajima, K., Tayama, S., Moldéus, P. Mol. Pharmacol. (1995) [Pubmed]
  22. The enzyme involved in sulfation of the turgorin, gallic acid 4-O-(beta-D-glucopyranosyl-6'-sulfate) is pulvini-localized in Mimosa pudica. Varin, L., Chamberland, H., Lafontaine, J.G., Richard, M. Plant J. (1997) [Pubmed]
  23. Modulation of arachidonic acid metabolism by phenols: relation to their structure and antioxidant/prooxidant properties. Alanko, J., Riutta, A., Holm, P., Mucha, I., Vapaatalo, H., Metsä-Ketelä, T. Free Radic. Biol. Med. (1999) [Pubmed]
  24. Iron-induced L1210 cell growth: evidence of a transferrin-independent iron transport. Basset, P., Quesneau, Y., Zwiller, J. Cancer Res. (1986) [Pubmed]
  25. Regulation of p53 by activated protein kinase C-delta during nitric oxide-induced dopaminergic cell death. Lee, S.J., Kim, D.C., Choi, B.H., Ha, H., Kim, K.T. J. Biol. Chem. (2006) [Pubmed]
  26. Cellular and in vivo hepatotoxicity caused by green tea phenolic acids and catechins. Galati, G., Lin, A., Sultan, A.M., O'Brien, P.J. Free Radic. Biol. Med. (2006) [Pubmed]
  27. Advances in basic and clinical immunology. Chinen, J., Finkelman, F., Shearer, W.T. J. Allergy Clin. Immunol. (2006) [Pubmed]
  28. Inhibition of activator protein 1 activity and cell growth by purified green tea and black tea polyphenols in H-ras-transformed cells: structure-activity relationship and mechanisms involved. Chung, J.Y., Huang, C., Meng, X., Dong, Z., Yang, C.S. Cancer Res. (1999) [Pubmed]
  29. (-)-Epigallocatechin gallate and polyphenon E inhibit growth and activation of the epidermal growth factor receptor and human epidermal growth factor receptor-2 signaling pathways in human colon cancer cells. Shimizu, M., Deguchi, A., Lim, J.T., Moriwaki, H., Kopelovich, L., Weinstein, I.B. Clin. Cancer Res. (2005) [Pubmed]
  30. Inhibitory effect of green tea (-)-epigallocatechin gallate on resistin gene expression in 3T3-L1 adipocytes depends on the ERK pathway. Liu, H.S., Chen, Y.H., Hung, P.F., Kao, Y.H. Am. J. Physiol. Endocrinol. Metab. (2006) [Pubmed]
  31. Antimitogenic effect of green tea (-)-epigallocatechin gallate on 3T3-L1 preadipocytes depends on the ERK and Cdk2 pathways. Hung, P.F., Wu, B.T., Chen, H.C., Chen, Y.H., Chen, C.L., Wu, M.H., Liu, H.C., Lee, M.J., Kao, Y.H. Am. J. Physiol., Cell Physiol. (2005) [Pubmed]
  32. (-)-Epigallocatechin gallate suppresses endothelin-1-induced interleukin-6 synthesis in osteoblasts: Inhibition of p44/p42 MAP kinase activation. Tokuda, H., Takai, S., Hanai, Y., Matsushima-Nishiwaki, R., Hosoi, T., Harada, A., Ohta, T., Kozawa, O. FEBS Lett. (2007) [Pubmed]
  33. Identification in traditional herbal medications and confirmation by synthesis of factors that inhibit cholera toxin-induced fluid accumulation. Oi, H., Matsuura, D., Miyake, M., Ueno, M., Takai, I., Yamamoto, T., Kubo, M., Moss, J., Noda, M. Proc. Natl. Acad. Sci. U.S.A. (2002) [Pubmed]
  34. Inhibition of tumor promoter-induced activator protein 1 activation and cell transformation by tea polyphenols, (-)-epigallocatechin gallate, and theaflavins. Dong, Z., Ma, W., Huang, C., Yang, C.S. Cancer Res. (1997) [Pubmed]
  35. Scavenging mechanisms of (-)-epigallocatechin gallate and (-)-epicatechin gallate on peroxyl radicals and formation of superoxide during the inhibitory action. Kondo, K., Kurihara, M., Miyata, N., Suzuki, T., Toyoda, M. Free Radic. Biol. Med. (1999) [Pubmed]
  36. Involvement of p38 MAPK and Nrf2 in phenolic acid-induced P-form phenol sulfotransferase expression in human hepatoma HepG2 cells. Yeh, C.T., Yen, G.C. Carcinogenesis (2006) [Pubmed]
 
WikiGenes - Universities