Surface alterations in calf lymphocytes oxidized by sodium periodate.
In order to investigate alterations in surface structure in transformed lymphocytes, calf submandibular lymph node cell suspensions were oxidized with NaIO4. Oxidezed lymphocytes were morphologically transformed and had higher rates of DNA synthesis by 2 days after treatment. These results were prevented by reduction of the cell suspension with NaBH4, or by neuraminidase treatment of cells prior to oxidation. The amount of 125I-labeled Agaricus bisporus lectin bound to cells immediately after oxidation and the affinity constant for binding were increased over 2-fold, while cells immediately following oxidation and reduction showed decreased receptors with still higher affinity for the lectin compared to untreated cells. The amount of Phaseolus vulgaris lectin bound to oxidezed cells was also increased, but affinity was unchanged. Immediately following oxidation and reduction, these receptor sites were unchanged in number and affinity from untreated cells. In contrast, the number and affinity of receptors for concanavalin A were not changed immediately after oxidation or oxidation and reduction. In order to define the extent of compositional changes in surface glycoprotein receptors, plasma membranes were isolated from frozen calf submandibular lymph nodes. Compared to untreated plasma membranes, oxidezed membranes had similar contents of galactose, mannose, N-acetylglucosamine, N-acetylgalactosamine, fucose, and amino acids. Sialic acid content of oxidized membranes was reduced when measured by thiobarbituric acid assay. Sialic acids of untreated plasma membranes co-chromatographed with N-glycolylneurominic acid and N-acetylneuraminic acid, while those of oxidized membranes co-chromatographed with N-glycolylneuraminic acid and 5-acetamido-3,5-dideoxy-L-arabino-7-aldehydo-2-heptulosonic acid. Therefore, specific surface conformational changes in certain classes of membrane glycoproteins are associated with mild Malapradian oxidation of membrane sialic acids. These temporally precede NaIO4-induced transformation of calf lymphocytes. This is consistent with an hypothesis of membrane-mediated stimulation of lymphocyte transformation.[1]References
- Surface alterations in calf lymphocytes oxidized by sodium periodate. Presant, C.A., Parker, S. J. Biol. Chem. (1976) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg