The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Agaricus

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Agaricus

 

High impact information on Agaricus

 

Chemical compound and disease context of Agaricus

  • Paralleling previously reported results with haloperidol, the Agaricus catalepsy was potentiated by the mixed agonist, apomorphine (5 mg/kg), and by the selective D2 agonist, bromocriptine (5 mg/kg) and was reversed by the D1 agonist, SKF 38393 [10].
 

Biological context of Agaricus

  • A monoclonal antibody against 4-aminobenzoate hydroxylase (EC 1.14.13.27) from Agaricus bisporus, a common edible mushroom, has been produced by the fusion of BALB/c mouse spleen cells immunized with the denatured enzyme and P3x63Ag8U1 myeloma cells in order to locate and characterize the catalytic site of the enzyme [11].
  • Finally, inhibition of nuclear import and export using Agaricus bisporus lectin and leptomycin B, respectively, demonstrated that cPLA(2)-alpha contains functional nuclear localisation and export signals [12].
  • The reaction of mushroom (Agaricus bisporus) tyrosinase with dioxygen in the presence of several o-diphenolic substrates has been studied by steady-state and transient-phase kinetics in order to elucidate the rate-limiting step and to provide new insights into the mechanism of oxidation of these substrates [13].
  • Radical production and DNA damage induced by carcinogenic 4-hydrazinobenzoic acid, an ingredient of mushroom Agaricus bisporus [14].
  • All cDNAs, except the presumed cytochrome-P450-specifying cDNA (cypA), hybridized with single copy genes scattered over the Agaricus genome [15].
 

Anatomical context of Agaricus

 

Associations of Agaricus with chemical compounds

 

Gene context of Agaricus

 

Analytical, diagnostic and therapeutic context of Agaricus

References

  1. Aortic rupture and aortic smooth muscle tumors in mice. Induction by p-hydrazinobenzoic acid hydrochloride of the cultivated mushroom Agaricus bisporus. McManus, B.M., Toth, B., Patil, K.D. Lab. Invest. (1987) [Pubmed]
  2. Molecular characterization of the glnA gene encoding glutamine synthetase from the edible mushroom Agaricus bisporus. Kersten, M.A., Müller, Y., Op den Camp, H.J., Vogels, G.D., Van Griensven, L.J., Visser, J., Schaap, P.J. Mol. Gen. Genet. (1997) [Pubmed]
  3. Agrobacterium-mediated transformation of the ectomycorrhizal symbiont Laccaria bicolor S238N. Kemppainen, M., Circosta, A., Tagu, D., Martin, F., Pardo, A.G. Mycorrhiza (2005) [Pubmed]
  4. Influence of aqueous extract of Agaricus blazei on rat liver toxicity induced by different doses of diethylnitrosamine. Barbisan, L.F., Miyamoto, M., Scolastici, C., Salvadori, D.M., Ribeiro, L.R., Eira, A.F., de Camargo, J.L. Journal of ethnopharmacology. (2002) [Pubmed]
  5. Anti-tumor polysaccharide from the mycelium of liquid-cultured Agaricus blazei mill. Mizuno, M., Minato, K., Ito, H., Kawade, M., Terai, H., Tsuchida, H. Biochem. Mol. Biol. Int. (1999) [Pubmed]
  6. Carcinogenesis of 4-(hydroxymethyl)benzenediazonium ion (tetrafluoroborate) of Agaricus bisporus. Toth, B., Patil, K., Jae, H.S. Cancer Res. (1981) [Pubmed]
  7. Tumor induction with the N'-acetyl derivative of 4-hydroxymethyl-phenylhydrazine, a metabolite of agaritine of Agaricus bisporus. Toth, B., Nagel, D., Patil, K., Erickson, J., Antonson, K. Cancer Res. (1978) [Pubmed]
  8. gamma-L-Glutaminyl-4-hydroxybenzene, an inducer of cryptobiosis in Agaricus bisporus and a source of specific metabolic inhibitors for melanogenic cells. Vogel, F.S., Kemper, L.A., Jeffs, P.W., Cass, M.W., Graham, D.G. Cancer Res. (1977) [Pubmed]
  9. Inhibition of DNA polymerase from L1210 murine leukemia by a sulfhydryl reagent from agaricus bisporus. Graham, D.G., Tye, R.W., Vogel, F.S. Cancer Res. (1977) [Pubmed]
  10. Influence of dopamine agonists and an opiate antagonist on agaricus-induced catalepsy, as tested by a new method. Sukul, N.C., Klemm, W.R. Archives internationales de pharmacodynamie et de thérapie. (1988) [Pubmed]
  11. A monoclonal antibody recognizing the FAD-binding site of 4-aminobenzoate hydroxylase from Agaricus bisporus. Tsuji, H., Ogawa, T., Bando, N., Kimoto, M., Sasaoka, K. J. Biol. Chem. (1990) [Pubmed]
  12. Nuclear localisation of cytosolic phospholipase A2-alpha in the EA.hy.926 human endothelial cell line is proliferation dependent and modulated by phosphorylation. Grewal, S., Morrison, E.E., Ponnambalam, S., Walker, J.H. J. Cell. Sci. (2002) [Pubmed]
  13. Stopped-flow and steady-state study of the diphenolase activity of mushroom tyrosinase. Rodríguez-López, J.N., Fenoll, L.G., García-Ruiz, P.A., Varón, R., Tudela, J., Thorneley, R.N., García-Cánovas, F. Biochemistry (2000) [Pubmed]
  14. Radical production and DNA damage induced by carcinogenic 4-hydrazinobenzoic acid, an ingredient of mushroom Agaricus bisporus. Oikawa, S., Ito, T., Iwayama, M., Kawanishi, S. Free Radic. Res. (2006) [Pubmed]
  15. Isolation of developmentally regulated genes from the edible mushroom Agaricus bisporus. De Groot, P.W., Schaap, P.J., Van Griensven, L.J., Visser, J. Microbiology (Reading, Engl.) (1997) [Pubmed]
  16. The antiproliferative effect of lectin from the edible mushroom (Agaricus bisporus) on human keratinocytes: preliminary studies on its use in psoriasis. Parslew, R., Jones, K.T., Rhodes, J.M., Sharpe, G.R. Br. J. Dermatol. (1999) [Pubmed]
  17. Comparative effect of the fungicide Prochloraz-Mn on Agaricus bisporus vegetative-mycelium and fruit-body cell walls. Bernardo, D., Pérez Cabo, A., Novaes-Ledieu, M., Pardo, J., García Mendoza, C. Int. Microbiol. (2004) [Pubmed]
  18. Effect of PHA-B fraction of Agaricus bisporus lectin on insulin release and 45Ca2+ uptake by islets of Langerhans in vitro. Ahmad, N., Bansal, R., Rastogi, A.K., Kidwai, J.R. Acta diabetologica latina. (1984) [Pubmed]
  19. Monitoring the polysaccharide quality of Agaricus blazei in submerged culture by examining molecular weight distribution and TNF-alpha release capability of macrophage cell line RAW 264.7. Shu, C.H., Wen, B.J., Lin, K.J. Biotechnol. Lett. (2004) [Pubmed]
  20. Production of laccase by immobilized cells of Agaricus sp.: induction effect of xylan and lignin derivatives. Kaluskar, V.M., Kapadnis, B.P., Jaspers, C., Penninckx, M.J. Appl. Biochem. Biotechnol. (1999) [Pubmed]
  21. Synthetic and naturally occurring hydrazines as possible cancer causative agents. Toth, B. Cancer Res. (1975) [Pubmed]
  22. Purification and properties of 4-aminobenzoate hydroxylase, a new monooxygenase from Agaricus bisporus. Tsuji, H., Ogawa, T., Bando, N., Sasaoka, K. J. Biol. Chem. (1986) [Pubmed]
  23. The crystallographic structure of the mannitol 2-dehydrogenase NADP+ binary complex from Agaricus bisporus. Hörer, S., Stoop, J., Mooibroek, H., Baumann, U., Sassoon, J. J. Biol. Chem. (2001) [Pubmed]
  24. Effect of lectins on hormone release from isolated rat islets of langerhans. Ewart, R.B., Kornfeld, S., Kipnis, D.M. Diabetes (1975) [Pubmed]
  25. A screening system for antioxidants using thioredoxin-deficient yeast: discovery of thermostable antioxidant activity from Agaricus blazei Murill. Izawa, S., Inoue, Y. Appl. Microbiol. Biotechnol. (2004) [Pubmed]
  26. Properties of calcium-dependent regulatory proteins from fungi and yeast. Nakamura, T., Fujita, K., Eguchi, Y., Yazawa, M. J. Biochem. (1984) [Pubmed]
  27. NAD+-dependent glutamate dehydrogenase of the edible mushroom Agaricus bisporus: biochemical and molecular characterization. Kersten, M.A., Müller, Y., Baars, J.J., Op den Camp, H.J., van der Drift, C., Van Griensven, L.J., Visser, J., Schaap, P.J. Mol. Gen. Genet. (1999) [Pubmed]
  28. Agaricus bisporus and Coprinus bilanatus TRP2 genes are tri-functional with conserved intron and domain organisations. Challen, M.P., Zhang, C., Elliott, T.J. FEMS Microbiol. Lett. (2002) [Pubmed]
  29. Influence of storage and household processing on the agaritine content of the cultivated Agaricus mushroom. Schulzová, V., Hajslová, J., Peroutka, R., Gry, J., Andersson, H.C. Food additives and contaminants. (2002) [Pubmed]
  30. Structural characterization of a water-soluble beta-D-glucan from fruiting bodies of Agaricus blazei Murr. Dong, Q., Yao, J., Yang, X.T., Fang, J.N. Carbohydr. Res. (2002) [Pubmed]
  31. HPLC detection of soluble carbohydrates involved in mannitol and trehalose metabolism in the edible mushroom Agaricus bisporus. Wannet, W.J., Hermans, J.H., van Der Drift, C., Op Den Camp, H.J. J. Agric. Food Chem. (2000) [Pubmed]
  32. Sequence analysis of the glyceraldehyde-3-phosphate dehydrogenase genes from the basidiomycetes Schizophyllum commune, Phanerochaete chrysosporium and Agaricus bisporus. Harmsen, M.C., Schuren, F.H., Moukha, S.M., van Zuilen, C.M., Punt, P.J., Wessels, J.G. Curr. Genet. (1992) [Pubmed]
  33. Carbohydrate-binding specificities of five lectins that bind to O-Glycosyl-linked carbohydrate chains. Quantitative analysis by frontal-affinity chromatography. Sueyoshi, S., Tsuji, T., Osawa, T. Carbohydr. Res. (1988) [Pubmed]
 
WikiGenes - Universities