The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Smad4-dependent TGF-beta signaling suppresses RON receptor tyrosine kinase-dependent motility and invasion of pancreatic cancer cells.

Transforming growth factorbeta (TGF-beta) signals through Smad-dependent and Smad-independent pathways. However, Smad signaling is altered by allelic deletion or intragenic mutation of the Smad4 gene in more than half of pancreatic ductal adenocarcinomas. We show here that loss of Smad4-dependent signaling leads to aberrant expression of RON, a phosphotyrosine kinase receptor, and that signaling by RON cooperates with Smad4-independent TGF-beta signaling to promote cell motility and invasion. Restoring Smad4 expression in a pancreatic ductal adenocarcinoma cell line that is deficient in Smad4 repressed RON expression. Conversely, small interference RNA knock down of Smad4 or blocking TGF-beta signaling with a TGF-beta type I receptor kinase inhibitor in Smad4-intact cell lines induced RON expression. TGF-beta-induced motility and invasion were inhibited in cells that express Smad4 and that have low levels of RON compared with isogenically matched cells that were deficient in Smad4. Furthermore, knocking down RON expression in Smad4-deficient cells suppressed TGF-beta-mediated motility and invasion. We further determined that Smad4-dependent signaling regulated RON expression at the transcriptional level by real-time reverse transcription PCR and RON promoter luciferase reporter assays. Functional inactivation by site-directed mutations of two Smad binding sites on the RON promoter inhibited TGF-beta-mediated repression of RON promoter activity. These studies indicate that loss of Smad4 contributes to aberrant RON expression and that cross-talk of Smad4-independent TGF-beta signaling and the RON pathway promotes an invasive phenotype.[1]


  1. Smad4-dependent TGF-beta signaling suppresses RON receptor tyrosine kinase-dependent motility and invasion of pancreatic cancer cells. Zhao, S., Ammanamanchi, S., Brattain, M., Cao, L., Thangasamy, A., Wang, J., Freeman, J.W. J. Biol. Chem. (2008) [Pubmed]
WikiGenes - Universities