The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Tubular injury in a rat model of type 2 diabetes is prevented by metformin: a possible role of HIF-1α expression and oxygen metabolism.

OBJECTIVE: Chronic hypoxia has been recognized as a key regulator in renal tubulointerstitial fibrosis, as seen in diabetic nephropathy, which is associated with the activation of hypoxia-inducible factor (HIF)-1α. We assess here the effects of the biguanide, metformin, on the expression of HIF-1α in diabetic nephropathy using renal proximal tubular cells and type 2 diabetic rats. RESEARCH DESIGN AND METHODS: We explored the effects of metformin on the expression of HIF-1α using human renal proximal tubular epithelial cells (HRPTECs). Male Zucker diabetic fatty (ZDF; Gmi-fa/fa) rats were treated from 9 to 39 weeks with metformin (250 mg ⋅ kg(-1) ⋅ day(-1)) or insulin. RESULTS: Metformin inhibited hypoxia-induced HIF-1α accumulation and the expression of HIF-1-targeted genes in HRPTECs. Although metformin activated the downstream pathways of AMP-activated protein kinase (AMPK), neither the AMPK activator, AICAR, nor the mTOR inhibitor, rapamycin, suppressed hypoxia-induced HIF-1α expression. In addition, knockdown of AMPK-α did not abolish the inhibitory effects of metformin on HIF-1α expression. The proteasome inhibitor, MG-132, completely eradicated the suppression of hypoxia-induced HIF-1α accumulation by metformin. The inhibitors of mitochondrial respiration similarly suppressed hypoxia-induced HIF-1α expression. Metformin significantly decreased ATP production and oxygen consumption rates, which subsequently led to increased cellular oxygen tension. Finally, metformin, but not insulin, attenuated tubular HIF-1α expression and pimonidazole staining and ameliorated tubular injury in ZDF rats. CONCLUSIONS: Our data suggest that hypoxia-induced HIF-1α accumulation in diabetic nephropathy could be suppressed by the antidiabetes drug, metformin, through the repression of oxygen consumption.[1]

References

  1. Tubular injury in a rat model of type 2 diabetes is prevented by metformin: a possible role of HIF-1α expression and oxygen metabolism. Takiyama, Y., Harumi, T., Watanabe, J., Fujita, Y., Honjo, J., Shimizu, N., Makino, Y., Haneda, M. Diabetes (2011) [Pubmed]
 
WikiGenes - Universities