The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Regulation of hypothalamic renin-angiotensin system and oxidative stress by aldosterone.

In rats with salt-induced hypertension or postmyocardial infarction, angiotensin II type 1 receptor (AT(1)R) densities and oxidative stress increase and neuronal NO synthase (nNOS) levels decrease in the paraventricular nucleus (PVN). The present study was designed to determine whether these changes may depend on activation of the aldosterone -'ouabain' neuromodulatory pathway. After intracerebroventricular (i.c.v.) infusion of aldosterone (20 ng h(-1)) for 14 days, blood pressure (BP) and heart rate (HR) were recorded in conscious Wistar rats, and mRNA and protein for nNOS, endothelial NO synthase (eNOS), AT(1)R and NADPH oxidase subunits were assessed in brain tissue. Blood pressure and HR were significantly increased by aldosterone. Aldosterone significantly increased mRNA and protein of AT(1)R, P22phox, P47phox, P67phox and Nox2, and decreased nNOS but not eNOS mRNA and protein in the PVN, as well as increased the angiotensin-converting enzyme and AT(1)R binding densities in the PVN and supraoptic nucleus. The increases in BP and HR, as well as the changes in mRNA, proteins and angiotensin-converting enzyme and AT(1)R binding densities were all largely prevented by concomitant i.c.v. infusion of Digibind (to bind 'ouabain') or benzamil (to block presumed epithelial sodium channels). These data indicate that aldosterone, via 'ouabain', increases in the PVN angiotensin-converting enzyme, AT(1)R and oxidative stress, but decreases nNOS, and suggest that endogenous aldosterone may cause the similar pattern of changes observed in salt-sensitive hypertension and heart failure postmyocardial infarction.[1]

References

  1. Regulation of hypothalamic renin-angiotensin system and oxidative stress by aldosterone. Huang, B.S., Zheng, H., Tan, J., Patel, K.P., Leenen, F.H. Exp. Physiol. (2011) [Pubmed]
 
WikiGenes - Universities