The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review

Supraoptic Nucleus

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Supraoptic Nucleus


Psychiatry related information on Supraoptic Nucleus


High impact information on Supraoptic Nucleus


Chemical compound and disease context of Supraoptic Nucleus


Biological context of Supraoptic Nucleus


Anatomical context of Supraoptic Nucleus


Associations of Supraoptic Nucleus with chemical compounds

  • Notably, the osmosensitivity of the supraoptic nucleus is described including the recent data that suggests an important participation of taurine in the transmission of the osmotic information [28].
  • In mammals, the magnocellular neurons of the supraoptic nucleus (SON) have been classified into vasopressin- (VP) and oxytocin- (OT) producing subtypes [29].
  • Thus, an endogenous kappa-agonist modulates vasopressin cell activity by an action within the supraoptic nucleus [30].
  • Synaptically released histamine increases dye coupling among vasopressinergic neurons of the supraoptic nucleus: mediation by H1 receptors and cyclic nucleotides [31].
  • A lower but significant increase in the CRF-R transcript signal was also observed in the supraoptic nucleus 6 hr after the LPS treatment.(ABSTRACT TRUNCATED AT 400 WORDS)[32]

Gene context of Supraoptic Nucleus


Analytical, diagnostic and therapeutic context of Supraoptic Nucleus


  1. A novel role for endogenous pituitary adenylate cyclase activating polypeptide in the magnocellular neuroendocrine system. Gillard, E.R., León-Olea, M., Mucio-Ramírez, S., Coburn, C.G., Sánchez-Islas, E., de Leon, A., Mussenden, H., Bauce, L.G., Pittman, Q.J., Currás-Collazo, M.C. Endocrinology (2006) [Pubmed]
  2. Vasopressin gene transcripts in mineralocorticoid hypertension: an in situ study. Ashen, M.D., Hartman, R.D., Barraclough, C.A., Petersen, S.L., Hamlyn, J.M. J. Hypertens. (1992) [Pubmed]
  3. Effects of neural stalk stimulation on phasic discharge of supraoptic neurones in Brattleboro rats devoid of vasopressin. Leng, G., Wiersma, J. J. Endocrinol. (1981) [Pubmed]
  4. Vasopressin mRNA changes during kindling: the effects of kindling site and stage. Greenwood, R.S., Abdou, A., Meeker, R.B., Hayward, J.N. Brain Res. Mol. Brain Res. (1994) [Pubmed]
  5. Altered control of the hypothalamo-pituitary-adrenal axis in adult male rats exposed perinatally to food deprivation and/or dehydration. Sebaai, N., Lesage, J., Vieau, D., Alaoui, A., Dupouy, J.P., Deloof, S. Neuroendocrinology (2002) [Pubmed]
  6. Local opioid inhibition and morphine dependence of supraoptic nucleus oxytocin neurones in the rat in vivo. Ludwig, M., Brown, C.H., Russell, J.A., Leng, G. J. Physiol. (Lond.) (1997) [Pubmed]
  7. No vasopressin cell loss in the human hypothalamus in aging and Alzheimer's disease. Van der Woude, P.F., Goudsmit, E., Wierda, M., Purba, J.S., Hofman, M.A., Bogte, H., Swaab, D.F. Neurobiol. Aging (1995) [Pubmed]
  8. Oxytocin neuron activation and Fos expression: a quantitative immunocytochemical analysis of the effect of lactation, parturition, osmotic and cardiovascular stimulation. Fenelon, V.S., Poulain, D.A., Theodosis, D.T. Neuroscience (1993) [Pubmed]
  9. Chromogranin mRNA levels in the brain as a marker for acute and chronic changes in neuronal activity: effect of treatments including seizures, osmotic stimulation and axotomy in the rat. Shen, P.J., Gundlach, A.L. Eur. J. Neurosci. (1996) [Pubmed]
  10. Oxytocin-immunoreactive terminals synapse on oxytocin neurones in the supraoptic nucleus. Theodosis, D.T. Nature (1985) [Pubmed]
  11. An N-terminal variant of Trpv1 channel is required for osmosensory transduction. Naeini, R.S., Witty, M.F., Séguéla, P., Bourque, C.W. Nat. Neurosci. (2006) [Pubmed]
  12. Excitatory amino acids: function and significance in reproduction and neuroendocrine regulation. Brann, D.W., Mahesh, V.B. Frontiers in neuroendocrinology. (1994) [Pubmed]
  13. Golgi apparatus, GERL, and secretory granule formation within neurons of the hypothalamo-neurohypophysial system of control and hyperosmotically stressed mice. Broadwell, R.D., Oliver, C. J. Cell Biol. (1981) [Pubmed]
  14. Apelin, a potent diuretic neuropeptide counteracting vasopressin actions through inhibition of vasopressin neuron activity and vasopressin release. De Mota, N., Reaux-Le Goazigo, A., El Messari, S., Chartrel, N., Roesch, D., Dujardin, C., Kordon, C., Vaudry, H., Moos, F., Llorens-Cortes, C. Proc. Natl. Acad. Sci. U.S.A. (2004) [Pubmed]
  15. The role of nitric oxide in morphine dependence and withdrawal excitation of rat oxytocin neurons. Bull, P.M., Ludwig, M., Blackburn-Munro, G.J., Delgado-Cohen, H., Brown, C.H., Russell, J.A. Eur. J. Neurosci. (2003) [Pubmed]
  16. Effect of indomethacin on the c-fos expression in AVP and TH neurons in rat brain induced by lipopolysaccharide. Xu, S., Guo, S., Jiang, X., Yin, Q., Umezawa, T., Hisamitsu, T. Brain Res. (2003) [Pubmed]
  17. Regional neurohypophysial and hypothalamic blood flow in rats during hypercapnia. Bryan, R.M., Myers, C.L., Page, R.B. Am. J. Physiol. (1988) [Pubmed]
  18. Synaptic plasticity in the rat supraoptic nucleus during lactation involves GABA innervation and oxytocin neurons: a quantitative immunocytochemical analysis. Gies, U., Theodosis, D.T. J. Neurosci. (1994) [Pubmed]
  19. Atrial natriuretic peptide modulates synaptic transmission from osmoreceptor afferents to the supraoptic nucleus. Richard, D., Bourque, C.W. J. Neurosci. (1996) [Pubmed]
  20. Interaction of the hypothalamic paraventricular nucleus and central nucleus of the amygdala in naloxone blockade of neuropeptide Y-induced feeding revealed by c-fos expression. Pomonis, J.D., Levine, A.S., Billington, C.J. J. Neurosci. (1997) [Pubmed]
  21. Glucocorticoids regulate peptidyl-glycine alpha-amidating monooxygenase gene expression in the rat hypothalamic paraventricular nucleus. Grino, M., Guillaume, V., Boudouresque, F., Conte-Devolx, B., Maltese, J.Y., Oliver, C. Mol. Endocrinol. (1990) [Pubmed]
  22. Molecular mechanisms of stress-induced proenkephalin gene regulation: CREB interacts with the proenkephalin gene in the mouse hypothalamus and is phosphorylated in response to hyperosmolar stress. Borsook, D., Konradi, C., Falkowski, O., Comb, M., Hyman, S.E. Mol. Endocrinol. (1994) [Pubmed]
  23. Social stress in hamsters: defeat activates specific neurocircuits within the brain. Kollack-Walker, S., Watson, S.J., Akil, H. J. Neurosci. (1997) [Pubmed]
  24. Specialized membrane domains for water transport in glial cells: high-resolution immunogold cytochemistry of aquaporin-4 in rat brain. Nielsen, S., Nagelhus, E.A., Amiry-Moghaddam, M., Bourque, C., Agre, P., Ottersen, O.P. J. Neurosci. (1997) [Pubmed]
  25. Oxytocin and vasopressin release in discrete brain areas after naloxone in morphine-tolerant and -dependent anesthetized rats: push-pull perfusion study. Russell, J.A., Neumann, I., Landgraf, R. J. Neurosci. (1992) [Pubmed]
  26. In situ hybridization analysis of arginine vasopressin gene transcription using intron-specific probes. Herman, J.P., Schäfer, M.K., Watson, S.J., Sherman, T.G. Mol. Endocrinol. (1991) [Pubmed]
  27. Increased brain transcription factor expression by angiotensin in genetic hypertension. Blume, A., Lebrun, C.J., Herdegen, T., Bravo, R., Linz, W., Möllenhoff, E., Unger, T. Hypertension (1997) [Pubmed]
  28. Osmotic regulation of neuronal activity: a new role for taurine and glial cells in a hypothalamic neuroendocrine structure. Hussy, N., Deleuze, C., Desarménien, M.G., Moos, F.C. Prog. Neurobiol. (2000) [Pubmed]
  29. Morphological and electrophysiological classification of hypothalamic supraoptic neurons. Armstrong, W.E. Prog. Neurobiol. (1995) [Pubmed]
  30. kappa-opioid regulation of neuronal activity in the rat supraoptic nucleus in vivo. Brown, C.H., Ludwig, M., Leng, G. J. Neurosci. (1998) [Pubmed]
  31. Synaptically released histamine increases dye coupling among vasopressinergic neurons of the supraoptic nucleus: mediation by H1 receptors and cyclic nucleotides. Hatton, G.I., Yang, Q.Z. J. Neurosci. (1996) [Pubmed]
  32. Immune challenge and immobilization stress induce transcription of the gene encoding the CRF receptor in selective nuclei of the rat hypothalamus. Rivest, S., Laflamme, N., Nappi, R.E. J. Neurosci. (1995) [Pubmed]
  33. Identification of relaxin-3/INSL7 as an endogenous ligand for the orphan G-protein-coupled receptor GPCR135. Liu, C., Eriste, E., Sutton, S., Chen, J., Roland, B., Kuei, C., Farmer, N., Jörnvall, H., Sillard, R., Lovenberg, T.W. J. Biol. Chem. (2003) [Pubmed]
  34. Estrogen receptor beta messenger ribonucleic acid expression in the forebrain of proestrous, pregnant, and lactating female rats. Gréco, B., Lubbers, L.S., Blaustein, J.D. Endocrinology (2003) [Pubmed]
  35. Amygdala kindling alters N-methyl-D-aspartate receptor subunit messenger RNA expression in the rat supraoptic nucleus. Al-Ghoul, W.M., Meeker, R.B., Greenwood, R.S. Neuroscience (1997) [Pubmed]
  36. Galanin immunoreactive neurons in the human hypothalamus: colocalization with vasopressin-containing neurons. Gai, W.P., Geffen, L.B., Blessing, W.W. J. Comp. Neurol. (1990) [Pubmed]
  37. Colocalization of urocortin and neuronal nitric oxide synthase in the hypothalamus and Edinger-Westphal nucleus of the rat. Spina, M.G., Langnaese, K., Orlando, G.F., Horn, T.F., Rivier, J., Vale, W.W., Wolf, G., Engelmann, M. J. Comp. Neurol. (2004) [Pubmed]
  38. Glucocorticoid receptor in magnocellular neurosecretory cells. Kiss, J.Z., Van Eekelen, J.A., Reul, J.M., Westphal, H.M., De Kloet, E.R. Endocrinology (1988) [Pubmed]
  39. Interruption of central noradrenergic pathways and morphine withdrawal excitation of oxytocin neurones in the rat. Brown, C.H., Murphy, N.P., Munro, G., Ludwig, M., Bull, P.M., Leng, G., Russell, J.A. J. Physiol. (Lond.) (1998) [Pubmed]
  40. Adenosine inhibits voltage-dependent Ca2+ currents in rat dissociated supraoptic neurones via A1 receptors. Noguchi, J., Yamashita, H. J. Physiol. (Lond.) (2000) [Pubmed]
  41. Dorsomedial medulla stimulation activates rat supraoptic oxytocin and vasopressin neurones through different pathways. Raby, W.N., Renaud, L.P. J. Physiol. (Lond.) (1989) [Pubmed]
WikiGenes - Universities