The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Spectroscopic evidence for ligand-induced conformational change in NADP+:isocitrate dehydrogenase.

Conformational changes induced by binding of ligands to cytosolic NADP(+)-specific isocitrate dehydrogenase from lactating bovine mammary gland were assessed using circular dichroism and fluorescence techniques. The secondary structure of isocitrate dehydrogenase, as monitored by CD spectra in the far-UV region, is unaltered by enzyme-ligand interactions; in contrast, dramatic changes occur in the near-UV region (270-290 nm) assigned to tyrosine and/or solvent-exposed tryptophan residues. Both the coenzyme analog, 2'-phosphoadenosine 5'-diphosphoribose, and NADPH have an effect on the CD spectrum which is opposite to that produced by metal complexes of either isocitrate or citrate. A CD band at 292 nm assigned to approximately 2 tryptophan residues in a hydrophobic environment is unchanged by binding of substrate or coenzyme. Approximately 30% of the intrinsic fluorescence of isocitrate dehydrogenase, corresponding to approximately 2 tryptophan residues, is not quenched by acrylamide in the absence of 6.3 M guanidine hydrochloride and remains unquenched in the enzyme-substrate complex. The constancy in the proportion of buried and exposed tryptophan residues implicates tyrosine in the observed near-UV CD spectral changes. Since binding of ligands does not influence quaternary structure (Seery, V.L., and Farrell, H. M., Jr. (1989) Arch. Biochem. Biophys. 274, 453-462), activation of isocitrate dehydrogenase may be related to a substrate-induced conformational transition.[1]


WikiGenes - Universities