The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Irreversible tubulointerstitial damage associated with chronic aminonucleoside nephrosis. Amelioration by angiotensin I converting enzyme inhibition.

Chronic aminonucleoside nephrosis is variably associated with tubulointerstitial damage, depending on the route and frequency of drug administration. Recently, different groups have shown this injurious tubulointerstitial process to be reversible, coinciding with the resolution of heavy proteinuria to normal values. The authors have previously shown that a single jugular intravenous administration of puromycin aminonucleoside (PA) to male Munich-Wistar rats produces a triphasic pattern of glomerular injury and proteinuria, which culminates in focal glomerulosclerosis 70 weeks after drug administration. The authors now report the later progression of the tubulointerstitial morphologic abnormalities associated with acute nephrosis (phase I), despite spontaneous resolution of glomerular injury during the intermediate period (phase II) in this model. Although treatment of rats with the angiotensin I converting enzyme inhibitor enalapril (50 mg/l drinking water) over the 70-week period did not affect the magnitude of proteinuria during the acute nephrotic phase, enalapril prevented the recurrence of proteinuria (phase III), as well as significantly reducing the severity of interstitial fibrosis, extent of tubular dilatation, and number of intratubular casts on semiquantitative scoring at the conclusion of the study. In addition, enalapril-treated rats had less low-molecular-weight protein excretion during the recurrent phase of proteinuria, suggesting a preservation of tubular functional capacity to reabsorb these proteins. In vitro cytotoxicity studies showed only the glomerular visceral epithelial cell to be sensitive to PA, in contrast with rat tubular epithelium and other cellular controls. Although the exact pathogenetic mechanism responsible for the development of the tubulointerstitial damage remains unknown, PA in vitro does not adversely affect rat tubular epithelium; there is however a clear correlation between the magnitude of recurrent proteinuria and the severity of tubulointerstitial morphologic abnormalities, as suggested by the beneficial effect of converting enzyme inhibition on both of these untoward processes.[1]

References

 
WikiGenes - Universities