The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Effect of tunicamycin on sialomucin and natural killer susceptibility of rat mammary tumor ascites cells.

The MAT-B1 and MAT-C1 ascites sublines of the 13762 rat mammary adenocarcinoma contain a dominant cell surface "complex" consisting of two glycoproteins: ascites sialoglycoprotein (ASGP)-1, a Mr 600,000-700,000 peanut agglutinin-binding sialomucin, and ASGP-2, a Mr 120,000 concancavalin A-binding glycoprotein (Sherblom et al., J. Biol. Chem., 255: 783-790, 1980; Sherblom and Carraway, J. Biol. Chem., 255: 12051-12059, 1980). Although both cell lines are resistant to lysis by natural killer cells, treatments which result in loss of cell surface ASGP-1 render the cells susceptible to natural killer cell lysis (Sherblom and Moody, Cancer Res., 46:4543-4546, 1986). Treatment of the ascites cells with 5 micrograms/ml tunicamycin for 24 h effectively inhibits glycosylation of ASGP-2 without affecting cell viability or total protein synthesis. Under these conditions, expression of ASGP-1 is depressed by at least 50% in both cell lines, as monitored by [3H]glucosamine incorporation and by binding of peanut agglutinin to intact cells. The size distribution of O-linked oligosaccharides in ASGP-1 from tunicamycin-treated versus control MAT-B1 cells is indistinguishable, as determined by Bio-Gel P-4 chromatography following alkaline-borohydride treatment. Complex isolated from either treated or control cells bands at the same density in a CsCl gradient containing Triton X-100 and contains a diffuse band corresponding to ASGP-2 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Tunicamycin-treated cells, consistent with the reduced expression of ASGP-1, are significantly more susceptible to natural killer cell-mediated lysis, when compared to untreated controls. The results suggest that N-linked glycosylation is a prerequisite for sialomucin synthesis and/or complex formation.[1]

References

  1. Effect of tunicamycin on sialomucin and natural killer susceptibility of rat mammary tumor ascites cells. Bharathan, S., Moriarty, J., Moody, C.E., Sherblom, A.P. Cancer Res. (1990) [Pubmed]
 
WikiGenes - Universities