Differential effects of ovarian steroids and triphenylethylene compounds on macromolecular uptake and thymidine incorporation in the mouse uterus.
In the rodent uterus, estrogen elicits a biphasic response i.e. an early phase (Phase I) and a late phase (Phase II). Estradiol-17 beta ( E2) and estriol (E3), as well as triphenylethylene (TPE) compounds, CI-628 and clomiphene citrate (CC), were used to characterize Phase I and Phase II responses in uterine preparation for implantation in the mouse. While uterine macromolecular uptake (vascular permeability), a Phase I response, was studied in progesterone (P4)-primed animals, uterine [3H]thymidine incorporation (DNA synthesis), a Phase II response, was investigated with and without P4-priming. In the P4-primed uterus, all compounds, except CC, significantly increased uterine macromolecular uptake as determined by interstitial tissue accumulation of [125I]bovine serum albumin [( 125I]BSA). DNA synthesis as determined by cellular incorporation of [3H]thymidine was modulated by P4, estrogens and TPE compounds in a cell-type specific and temporal manner. As a single injection and in the absence of P4, E2 induced [3H]thymidine incorporation in the luminal and glandular epithelium at 18 and 24 h. E3 was inferior to E2 in this response. On the other hand, treatment with P4 for 1 day or 4 days induced [3H]thymidine incorporation primarily in stromal cells. However, stromal cell incorporation was potentiated when P4 treatment was combined with estrogens or TPE compounds. These results reveal the relative importance of Phase I and cell-type specific Phase II responses in uterine preparation for implantation.[1]References
- Differential effects of ovarian steroids and triphenylethylene compounds on macromolecular uptake and thymidine incorporation in the mouse uterus. Huet-Hudson, Y.M., Dey, S.K. J. Steroid Biochem. (1990) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg