The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

The role of sterol carrier protein 2 in stimulation of steroidogenesis in rat adrenal mitochondria by adrenal cytosol.

Cholesterol side-chain cleavage (CSCC) in isolated rat adrenal mitochondria is enhanced by prior corticotropin (ACTH) stimulation in vivo (8-fold). Part of this stimulation is retained in vitro by addition of cytosol from ACTH-stimulated adrenals to mitochondria from unstimulated rats (2.5- to 6-fold). In vivo cycloheximide (CX) treatment fully inhibits the in vivo response and resolves the in vitro cytosolic stimulation into components: (i) ACTH-sensitive, CX-sensitive; (ii) ACTH-sensitive, CX-insensitive; and (iii) ACTH-insensitive, CX-insensitive. These components contribute approximately equally to stimulation by ACTH cytosol. Components (i) and (iii) most probably correspond to previously identified cytosolic constituents steroidogenesis activator peptide and sterol carrier protein 2 ( SCP2). SCP2, as assayed by radioimmunoassay or ability to stimulate 7-dehydrocholesterol reductase, was not elevated in adrenal cytosol or other subcellular fractions by ACTH treatment. Complete removal of SCP2 from cytosol by treatment with anti- SCP2 IgG decreased cytosolic stimulatory activity by an increment that was independent of ACTH or CX treatment. Addition of an amount of SCP2, equivalent to that present in cytosol, restored activity to SCP2-depleted cytosol but had no effect alone or when added with intact cytosol, suggesting the presence of a factor in cytosol that potentiates SCP2 action. Pure hepatic SCP2 stimulated CX mitochondrial CSCC 1.5- to 2-fold (EC50 0.7 microM) but was five times less potent than SCP2 in adrenal cytosol. Two pools of reactive cholesterol were distinguished in these preparations characterized, respectively, by succinate-supported activity and by additional isocitrate-supported activity. ACTH cytosol and SCP2 each stimulated cholesterol availability to a fraction of mitochondrial P450scc that was reduced by succinate but failed to stimulate availability to additional P450scc reduced only by isocitrate.[1]


WikiGenes - Universities