In vivo crosslinking of nuclear proteins to DNA by cis-diamminedichloroplatinum (II) in differentiating rat myoblasts.
When cells are briefly exposed to cis-diamminedichloroplatinum (II) before lysis in high sodium dodecyl sulfate-urea solutions, the high molecular-weight nucleic acids pelleted by ultracentrifugation contain an increased level of bound proteins when compared to a similar fraction from untreated cells. Subsequent shearing of the pelleted DNA followed by treatment with DNase permits electrophoretic and immunoblot analysis of the crosslinked proteins. In the present study such experiments were carried out with reference to nuclear envelope pore complex proteins in the differentiating L8 rat skeletal muscle cells. The results show that (i) whereas the major lamin proteins crosslinked to DNA in both myoblast and myotubes, lamin B is crosslinked to a greater extent to DNA in myotubes; (ii) a 62-kDa lectin-binding glycoprotein is apparently situated differently with respect to DNA in myotube nuclei; and (iii) the crosslinking pattern of the nuclear matrix proteins to DNA is qualitatively similar in myoblast and myotubes. In addition, lamin C', a modified form of lamin C, not observed in intact nonmuscle cells previously [Glass et al. (1985) J. Biol. Chem. 260, 1895-1900], exists as a native component of the nuclear lamina in rat skeletal myotubes but not in myoblasts. These results point to significant structural alterations in the proteins of the nuclear lamina-pore complex during myogenesis.[1]References
- In vivo crosslinking of nuclear proteins to DNA by cis-diamminedichloroplatinum (II) in differentiating rat myoblasts. Wedrychowski, A., Bhorjee, J.S., Briggs, R.C. Exp. Cell Res. (1989) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg