Purification and characterization of human microsomal dipeptidase.
Human microsomal dipeptidase (MDP, formerly referred to as dehydropeptidase-I or renal dipeptidase) [EC 3.4.13.11] was solubilized from the membrane fraction of kidney by treatment with octyl-beta-D-glucoside and purified by a procedure including ion exchange chromatography and affinity chromatography on cilastatin-immobilized Sepharose. The purified human MDP was found to be homogeneous on sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis. The apparent molecular weight (Mr) was estimated by SDS-polyacrylamide gel electrophoresis under non-reducing conditions to be 130 kDa, comprising a homodimer of two subunits. After treatment with endoglycosidase F, human MDP showed a single band with an apparent Mr of 42 kDa on SDS-polyacrylamide gel electrophoresis. Human MDP was found to bind to Con A-Sepharose and the activity was eluted with methyl-alpha-D-mannopyranoside, suggesting that human MDP is a glycoprotein. We also examined the substrate specificity of human MDP and found that human MDP catalyzed the hydrolysis of S(substituent)-L-cysteinyl-glycine adducts such as L-cystinyl-bis(glycine) and S-N-ethylmaleimide-L-cysteinyl-glycine, as well as the conversion of leukotriene D4 to leukotriene E4. These results suggest that MDP might play an important role in the metabolism of glutathione and leukotriene.[1]References
- Purification and characterization of human microsomal dipeptidase. Adachi, H., Kubota, I., Okamura, N., Iwata, H., Tsujimoto, M., Nakazato, H., Nishihara, T., Noguchi, T. J. Biochem. (1989) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg