Inhibition of carotenoid accumulation and abscisic acid biosynthesis in fluridone-treated dark-grown barley.
Treatment of dark-grown barley with 0.1 mM fluridone inhibited carotenoid accumulation but did not alter plastid biogenesis. Plastids isolated from dark-grown control and dark-grown fluridone-treated plants were similar in size and protein compositions. Dehydration of dark-grown control barley caused abscisic acid levels to increase 30-40-fold in 4 h, while plants treated with 0.1 mM fluridone accumulated very little abscisic acid in response to dehydration. These results suggest that fluridone-treated plants do not accumulate abscisic acid because of carotenoid deficiency rather than plastid dysfunction. Dark-grown barley plants treated with 0.31 microM fluridone accumulated low levels of carotenoids. Dehydration of these plants resulted in a 4-8-fold increase in abscisic acid and a decrease in antheraxanthin, violaxanthin and neoxanthin, but no change in beta-carotene or lutein plus zeaxanthin levels. This result is consistent with the suggestion that xanthophylls are precursors to abscisic acid in dehydrated plants.[1]References
- Inhibition of carotenoid accumulation and abscisic acid biosynthesis in fluridone-treated dark-grown barley. Gamble, P.E., Mullet, J.E. Eur. J. Biochem. (1986) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg