The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Chemical Compound Review

AC1L3M3D     (1S)-4-[18-[(4S)-4-hydroxy- 2,6,6-trimethyl...

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Zeaxanthin


High impact information on Zeaxanthin

  • Here we show that in Arabidopsis thaliana overexpression of the chyB gene that encodes beta-carotene hydroxylase--an enzyme in the zeaxanthin biosynthetic pathway--causes a specific twofold increase in the size of the xanthophyll cycle pool [6].
  • Stress protection is probably due to the function of zeaxanthin in preventing oxidative damage of membranes [6].
  • The carotenoid zeaxanthin may serve as the chromophore for a photoreceptor involved in blue-light-activated stomatal opening [7].
  • We propose a simple mechanism for the xanthophyll-related, slow component of nonphotochemical quenching in LHC-II, by which excess energy is transferred to a zeaxanthin replacing violaxanthin in its binding site, and dissipated as heat [8].
  • The same effect was observed in wild-type CP26 upon treatment that leads to the accumulation of zeaxanthin in the membrane and was interpreted as the consequence of a conformational change [2].

Chemical compound and disease context of Zeaxanthin


Biological context of Zeaxanthin

  • The high levels of zeaxanthin in npq2 affected the kinetics of induction and relaxation but not the extent of nonphotochemical quenching [14].
  • To investigate the roles of xanthophylls in photoprotection, we isolated and characterized extragenic suppressors of the npq1 lor1 double mutant of Chlamydomonas reinhardtii, which lacks zeaxanthin and lutein and undergoes irreversible photooxidative bleaching and cell death at moderate to high light intensities [15].
  • These results confirm that LHC proteins exist in multiple conformations, an idea suggested by previous spectroscopic measurements (Moya et al., 2001), and imply that the switch between the different LHC protein conformations is activated by the binding of zeaxanthin to the allosteric site L2 [2].
  • Here, we describe three suppressor strains that carry point mutations in the coding sequence of the zeaxanthin epoxidase gene, resulting in the constitutive accumulation of zeaxanthin in a range of concentrations [15].
  • We have identified and functionally characterized the Crocus zeaxanthin 7,8(7',8')-cleavage dioxygenase gene (CsZCD), which codes for a chromoplast enzyme that initiates the biogenesis of these derivatives [16].

Anatomical context of Zeaxanthin


Associations of Zeaxanthin with other chemical compounds


Gene context of Zeaxanthin


Analytical, diagnostic and therapeutic context of Zeaxanthin


  1. Dietary carotenoids and vitamins A, C, and E and risk of breast cancer. Zhang, S., Hunter, D.J., Forman, M.R., Rosner, B.A., Speizer, F.E., Colditz, G.A., Manson, J.E., Hankinson, S.E., Willett, W.C. J. Natl. Cancer Inst. (1999) [Pubmed]
  2. A mechanism of nonphotochemical energy dissipation, independent from PsbS, revealed by a conformational change in the antenna protein CP26. Dall'Osto, L., Caffarri, S., Bassi, R. Plant Cell (2005) [Pubmed]
  3. Functional expression of zeaxanthin glucosyltransferase from Erwinia herbicola and a proposed uridine diphosphate binding site. Hundle, B.S., O'Brien, D.A., Alberti, M., Beyer, P., Hearst, J.E. Proc. Natl. Acad. Sci. U.S.A. (1992) [Pubmed]
  4. A transient exchange of the photosystem II reaction center protein D1:1 with D1:2 during low temperature stress of Synechococcus sp. PCC 7942 in the light lowers the redox potential of QB. Sane, P.V., Ivanov, A.G., Sveshnikov, D., Huner, N.P., Oquist, G. J. Biol. Chem. (2002) [Pubmed]
  5. Plasma kinetics of zeaxanthin and 3'-dehydro-lutein after multiple oral doses of synthetic zeaxanthin. Hartmann, D., Thürmann, P.A., Spitzer, V., Schalch, W., Manner, B., Cohn, W. Am. J. Clin. Nutr. (2004) [Pubmed]
  6. Overexpression of beta-carotene hydroxylase enhances stress tolerance in Arabidopsis. Davison, P.A., Hunter, C.N., Horton, P. Nature (2002) [Pubmed]
  7. Blue-light photoreceptors in higher plants. Briggs, W.R., Huala, E. Annu. Rev. Cell Dev. Biol. (1999) [Pubmed]
  8. Mechanisms of photoprotection and nonphotochemical quenching in pea light-harvesting complex at 2.5 A resolution. Standfuss, J., Terwisscha van Scheltinga, A.C., Lamborghini, M., Kühlbrandt, W. EMBO J. (2005) [Pubmed]
  9. In vitro characterization of astaxanthin biosynthetic enzymes. Fraser, P.D., Miura, Y., Misawa, N. J. Biol. Chem. (1997) [Pubmed]
  10. Dietary carotenoids and risk of breast cancer. Terry, P., Jain, M., Miller, A.B., Howe, G.R., Rohan, T.E. Am. J. Clin. Nutr. (2002) [Pubmed]
  11. Carotenoids and cardiovascular health. Voutilainen, S., Nurmi, T., Mursu, J., Rissanen, T.H. Am. J. Clin. Nutr. (2006) [Pubmed]
  12. Plasma lutein and zeaxanthin and other carotenoids as modifiable risk factors for age-related maculopathy and cataract: the POLA Study. Delcourt, C., Carrière, I., Delage, M., Barberger-Gateau, P., Schalch, W. Invest. Ophthalmol. Vis. Sci. (2006) [Pubmed]
  13. Inverse associations between plasma lycopene and other carotenoids and prostate cancer. Lu, Q.Y., Hung, J.C., Heber, D., Go, V.L., Reuter, V.E., Cordon-Cardo, C., Scher, H.I., Marshall, J.R., Zhang, Z.F. Cancer Epidemiol. Biomarkers Prev. (2001) [Pubmed]
  14. Arabidopsis mutants define a central role for the xanthophyll cycle in the regulation of photosynthetic energy conversion. Niyogi, K.K., Grossman, A.R., Björkman, O. Plant Cell (1998) [Pubmed]
  15. Zeaxanthin accumulation in the absence of a functional xanthophyll cycle protects Chlamydomonas reinhardtii from photooxidative stress. Baroli, I., Do, A.D., Yamane, T., Niyogi, K.K. Plant Cell (2003) [Pubmed]
  16. Oxidative remodeling of chromoplast carotenoids: identification of the carotenoid dioxygenase CsCCD and CsZCD genes involved in Crocus secondary metabolite biogenesis. Bouvier, F., Suire, C., Mutterer, J., Camara, B. Plant Cell (2003) [Pubmed]
  17. Lutein and zeaxanthin concentrations in plasma after dietary supplementation with egg yolk. Handelman, G.J., Nightingale, Z.D., Lichtenstein, A.H., Schaefer, E.J., Blumberg, J.B. Am. J. Clin. Nutr. (1999) [Pubmed]
  18. Relation among serum and tissue concentrations of lutein and zeaxanthin and macular pigment density. Johnson, E.J., Hammond, B.R., Yeum, K.J., Qin, J., Wang, X.D., Castaneda, C., Snodderly, D.M., Russell, R.M. Am. J. Clin. Nutr. (2000) [Pubmed]
  19. The relation of serum levels of antioxidant vitamins C and E, retinol and carotenoids with pulmonary function in the general population. Schünemann, H.J., Grant, B.J., Freudenheim, J.L., Muti, P., Browne, R.W., Drake, J.A., Klocke, R.A., Trevisan, M. Am. J. Respir. Crit. Care Med. (2001) [Pubmed]
  20. Xanthophyll cycle-dependent quenching of photosystem II chlorophyll a fluorescence: formation of a quenching complex with a short fluorescence lifetime. Gilmore, A.M., Hazlett, T.L., Govindjee, n.u.l.l. Proc. Natl. Acad. Sci. U.S.A. (1995) [Pubmed]
  21. Identification and characterization of a Pi isoform of glutathione S-transferase (GSTP1) as a zeaxanthin-binding protein in the macula of the human eye. Bhosale, P., Larson, A.J., Frederick, J.M., Southwick, K., Thulin, C.D., Bernstein, P.S. J. Biol. Chem. (2004) [Pubmed]
  22. Application of molecular epidemiology to lung cancer chemoprevention. Mooney, L.A., Perera, F.P. J. Cell. Biochem. Suppl. (1996) [Pubmed]
  23. Biochemical characterization of plasma membrane H+-ATPase activation in guard cell protoplasts of Arabidopsis thaliana in response to blue light. Ueno, K., Kinoshita, T., Inoue, S., Emi, T., Shimazaki, K. Plant Cell Physiol. (2005) [Pubmed]
  24. Effects of various carotenoids on cloned, effector-stage T-helper cell activity. Jyonouchi, H., Sun, S., Mizokami, M., Gross, M.D. Nutrition and cancer. (1996) [Pubmed]
  25. PsbS enhances nonphotochemical fluorescence quenching in the absence of zeaxanthin. Crouchman, S., Ruban, A., Horton, P. FEBS Lett. (2006) [Pubmed]
  26. Cooperation of antioxidants in protection against photosensitized oxidation. Wrona, M., Korytowski, W., Rózanowska, M., Sarna, T., Truscott, T.G. Free Radic. Biol. Med. (2003) [Pubmed]
  27. Lutein and zeaxanthin concentrations in rod outer segment membranes from perifoveal and peripheral human retina. Rapp, L.M., Maple, S.S., Choi, J.H. Invest. Ophthalmol. Vis. Sci. (2000) [Pubmed]
  28. Macular pigment density is reduced in obese subjects. Hammond, B.R., Ciulla, T.A., Snodderly, D.M. Invest. Ophthalmol. Vis. Sci. (2002) [Pubmed]
  29. Effect of dietary zeaxanthin on tissue distribution of zeaxanthin and lutein in quail. Toyoda, Y., Thomson, L.R., Langner, A., Craft, N.E., Garnett, K.M., Nichols, C.R., Cheng, K.M., Dorey, C.K. Invest. Ophthalmol. Vis. Sci. (2002) [Pubmed]
WikiGenes - Universities