The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Purification and characterization of an abscisic acid-inducible anionic peroxidase associated with suberization in potato (Solanum tuberosum).

An anionic peroxidase (EC 1.11.1.7), thought to be involved in suberization, was purified 110-fold from wound-healing slices of Solanum tuberosum by a combination of ammonium sulfate fractionation, Sephadex G-100 gel filtration, isoelectric focusing, and phenyl-Sepharose CL-4B chromatography in 24% yield. The purified enzyme was homogeneous as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and horizontal thin-layer polyacrylamide gel electrophoresis. The molecular weight of the enzyme was estimated to be 47,000 by both Sephadex G-100 gel filtration and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. This peroxidase was found to be a glycoprotein containing about 17% carbohydrate, approximately one-quarter of which was shown to be glucosamine residues. It was found to have an isoelectric point of 3.15. An anionic peroxidase was also isolated from abscisic acid-treated callus tissue culture of S. tuberosum by the above purification procedure. The two enzymes were shown to be immunologically similar, if not identical, based on their cross-reactivity with rabbit antibody prepared against the peroxidase from wound-healing slices, whereas the major cationic peroxidase from wound-healing slices did not cross-react with this antibody. The anionic enzyme from both sources showed very similar specific activities when assayed with a range of substrates, whereas the specific activities found for the cationic isozyme isolated from wound-healing slices were quite different.[1]

References

 
WikiGenes - Universities