The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Activation of excitatory amino acid receptors may mediate the folate-induced stimulation of locomotor activity after bilateral injection into the rat nucleus accumbens.

Folic acid (FA) and 5-formyltetrahydrofolic acid (FTHF) have been shown previously to produce a marked stimulation of locomotor activity after bilateral injection into the rat nucleus accumbens. This study was designed to determine whether the hypermotility response produced by the folates is mediated through the activation of excitatory amino acid receptors in the nucleus accumbens. Although FA stimulated locomotor activity, pteroic acid, a congener of FA that lacks the glutamate moiety, was ineffective, suggesting that the glutamate portion of the molecule is essential for the hypermotility response. The N-methyl-D-aspartic acid (NMDA) receptor antagonists, D-alpha-aminoadipic acid, DL-alpha-epsilon-diaminopimelic acid and MgCl2, at doses that attenuated NMDA-induced hypermotility, were ineffective in decreasing the folate-induced hypermotility response. This behavioral observation is consistent with the biochemical observation that the folates, at a 1 mM concentration, were unable to stimulate the release of [3H]acetylcholine from striatal slices, a model system that is sensitive to the activation of NMDA receptors. In contrast to the ineffectiveness of the NMDA antagonists in inhibiting the response to the folates, the antagonist, glutamic acid diethylester, which inhibited the response to quisqualic acid, but not NMDA, also inhibited the response to both FA and FTHF. Two recently characterized dipeptides, gamma-D-glutamylaminomethylsulfonic acid and gamma-D-glutamyltaurine, antagonized the stimulation of locomotor activity produced by quisqualic acid, FA and FTHF. However, these dipeptides also inhibited the response to NMDA, suggesting that these compounds are not able to distinguish between quisqualate and NMDA receptors in the nucleus accumbens.(ABSTRACT TRUNCATED AT 250 WORDS)[1]


WikiGenes - Universities