The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

A highly conserved endonuclease activity present in Escherichia coli, bovine, and human cells recognizes oxidative DNA damage at sites of pyrimidines.

We have compared the sites of nucleotide incision on DNA damaged by oxidizing agents when cleavage is mediated by either Escherichia coli endonuclease III or an endonuclease present in bovine and human cells. E. coli endonuclease III, the bovine endonuclease isolated from calf thymus, and the human endonuclease partially purified from HeLa and CEM-C1 lymphoblastoid cells incised DNA damaged with osmium tetroxide, ionizing radiation, or high doses of UV light at sites of pyrimidines. For each damaging agent studied, regardless of whether the E. coli, bovine, or human endonuclease was used, the same sequence specificity of cleavage was observed. We detected this endonuclease activity in a variety of human fibroblasts derived from normal individuals as well as individuals with the DNA repair deficiency diseases ataxia telangiectasia and xeroderma pigmentosum. The highly conserved nature of such a DNA damage-specific endonuclease suggests that a common pathway exists in bacteria, humans, and other mammals for the reversal of certain types of oxidative DNA damage.[1]

References

  1. A highly conserved endonuclease activity present in Escherichia coli, bovine, and human cells recognizes oxidative DNA damage at sites of pyrimidines. Doetsch, P.W., Henner, W.D., Cunningham, R.P., Toney, J.H., Helland, D.E. Mol. Cell. Biol. (1987) [Pubmed]
 
WikiGenes - Universities