The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review


Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Ichthyosis


Psychiatry related information on Ichthyosis


High impact information on Ichthyosis

  • The xeroderma pigmentosum group C (XPC) protein complex plays a key role in recognizing DNA damage throughout the genome for mammalian nucleotide excision repair (NER) [7].
  • Telomere loss in these mice was mediated by XPF, a structure-specific nuclease involved in ultraviolet-induced damage repair and mutated in individuals with xeroderma pigmentosum [8].
  • Different mutations in XPD give rise to three ultraviolet-sensitive syndromes: the skin cancer-prone disorder xeroderma pigmentosum (XP), in which repair of ultraviolet damage is affected; and the severe neurodevelopmental conditions Cockayne syndrome (CS) and trichothiodystrophy (TTD) [9].
  • The xeroderma pigmentosum group D (XPD) helicase subunit of TFIIH functions in DNA repair and transcription initiation [9].
  • In humans, mutations in the yeast RAD30 counterpart, POLH, cause the variant form of xeroderma pigmentosum (XP-V), and XP-V individuals suffer from a high incidence of sunlight-induced skin cancers [10].

Chemical compound and disease context of Ichthyosis


Biological context of Ichthyosis


Anatomical context of Ichthyosis


Gene context of Ichthyosis

  • Human cell extracts were fractionated to locate active components, including xeroderma pigmentosum (XP) and ERCC factors [25].
  • SSL2 protein is 54% identical to the protein encoded by the human gene, ERCC-3, for which a defective form causes xeroderma pigmentosum and Cockayne's syndrome [26].
  • One (RAD30A/POLH) has previously been characterized and shown to be defective in humans with the Xeroderma pigmentosum variant phenotype [27].
  • The dysfunction of TFIIH could result in a large panel of genetic disorders, such as xeroderma pigmentosum, Cockayne's syndrome and trichothiodystrophy [28].
  • Purification and cloning of a nucleotide excision repair complex involving the xeroderma pigmentosum group C protein and a human homologue of yeast RAD23 [29].

Analytical, diagnostic and therapeutic context of Ichthyosis


  1. Requirement of yeast RAD2, a homolog of human XPG gene, for efficient RNA polymerase II transcription. implications for Cockayne syndrome. Lee, S.K., Yu, S.L., Prakash, L., Prakash, S. Cell (2002) [Pubmed]
  2. Prevention of skin cancer in xeroderma pigmentosum with the use of oral isotretinoin. Kraemer, K.H., DiGiovanna, J.J., Moshell, A.N., Tarone, R.E., Peck, G.L. N. Engl. J. Med. (1988) [Pubmed]
  3. Antiproliferative activity of ecteinascidin 743 is dependent upon transcription-coupled nucleotide-excision repair. Takebayashi, Y., Pourquier, P., Zimonjic, D.B., Nakayama, K., Emmert, S., Ueda, T., Urasaki, Y., Kanzaki, A., Akiyama, S.I., Popescu, N., Kraemer, K.H., Pommier, Y. Nat. Med. (2001) [Pubmed]
  4. Mutations in lipid transporter ABCA12 in harlequin ichthyosis and functional recovery by corrective gene transfer. Akiyama, M., Sugiyama-Nakagiri, Y., Sakai, K., McMillan, J.R., Goto, M., Arita, K., Tsuji-Abe, Y., Tabata, N., Matsuoka, K., Sasaki, R., Sawamura, D., Shimizu, H. J. Clin. Invest. (2005) [Pubmed]
  5. Association between INK4a-ARF and p53 mutations in skin carcinomas of xeroderma pigmentosum patients. Soufir, N., Daya-Grosjean, L., de La Salmonière P, n.u.l.l., Moles, J.P., Dubertret, L., Sarasin, A., Basset-Seguin, N. J. Natl. Cancer Inst. (2000) [Pubmed]
  6. Role of the pseudoautosomal region in sex-chromosome pairing during male meiosis: meiotic studies in a man with a deletion of distal Xp. Mohandas, T.K., Speed, R.M., Passage, M.B., Yen, P.H., Chandley, A.C., Shapiro, L.J. Am. J. Hum. Genet. (1992) [Pubmed]
  7. UV-induced ubiquitylation of XPC protein mediated by UV-DDB-ubiquitin ligase complex. Sugasawa, K., Okuda, Y., Saijo, M., Nishi, R., Matsuda, N., Chu, G., Mori, T., Iwai, S., Tanaka, K., Tanaka, K., Hanaoka, F. Cell (2005) [Pubmed]
  8. XPF nuclease-dependent telomere loss and increased DNA damage in mice overexpressing TRF2 result in premature aging and cancer. Muñoz, P., Blanco, R., Flores, J.M., Blasco, M.A. Nat. Genet. (2005) [Pubmed]
  9. A temperature-sensitive disorder in basal transcription and DNA repair in humans. Vermeulen, W., Rademakers, S., Jaspers, N.G., Appeldoorn, E., Raams, A., Klein, B., Kleijer, W.J., Hansen, L.K., Hoeijmakers, J.H. Nat. Genet. (2001) [Pubmed]
  10. Efficient and accurate replication in the presence of 7,8-dihydro-8-oxoguanine by DNA polymerase eta. Haracska, L., Yu, S.L., Johnson, R.E., Prakash, L., Prakash, S. Nat. Genet. (2000) [Pubmed]
  11. X-linkage of steroid sulphatase in the mouse is evidence for a functional Y-linked allele. Keitges, E., Rivest, M., Siniscalco, M., Gartler, S.M. Nature (1985) [Pubmed]
  12. Synergistic effect of caffeine on the cytotoxicity of ultraviolet irradiation and of hydrocarbon epoxides in strains of Xeroderma pigmentosum. Maher, V.M., Ouellette, L.M., Mittlestat, M., McCormick, J.J. Nature (1975) [Pubmed]
  13. Excision of thymine dimers from specifically incised DNA by extracts of xeroderma pigmentosum cells. Cook, K., Friedberg, E.C., Cleaver, J.E. Nature (1975) [Pubmed]
  14. Transformation of tissue-cultured xeroderma pigmentosum fibroblasts by treatment with N-methyl-N'-nitro-N-nitrosoguanidine. Shimada, H., Shibuta, H., Yoshikawa, M. Nature (1976) [Pubmed]
  15. Removal of O6-methylguanine from DNA of normal and xeroderma pigmentosum-derived lymphoblastoid lines. Sklar, R., Strauss, B. Nature (1981) [Pubmed]
  16. Increased susceptibility to ultraviolet-B and carcinogens of mice lacking the DNA excision repair gene XPA. de Vries, A., van Oostrom, C.T., Hofhuis, F.M., Dortant, P.M., Berg, R.J., de Gruijl, F.R., Wester, P.W., van Kreijl, C.F., Capel, P.J., van Steeg, H. Nature (1995) [Pubmed]
  17. SSL1, a suppressor of a HIS4 5'-UTR stem-loop mutation, is essential for translation initiation and affects UV resistance in yeast. Yoon, H., Miller, S.P., Pabich, E.K., Donahue, T.F. Genes Dev. (1992) [Pubmed]
  18. Dual roles for DNA polymerase eta in homologous DNA recombination and translesion DNA synthesis. Kawamoto, T., Araki, K., Sonoda, E., Yamashita, Y.M., Harada, K., Kikuchi, K., Masutani, C., Hanaoka, F., Nozaki, K., Hashimoto, N., Takeda, S. Mol. Cell (2005) [Pubmed]
  19. Xeroderma pigmentosum p48 gene enhances global genomic repair and suppresses UV-induced mutagenesis. Tang, J.Y., Hwang, B.J., Ford, J.M., Hanawalt, P.C., Chu, G. Mol. Cell (2000) [Pubmed]
  20. Restoration of u.v.-induced excision repair in Xeroderma D cells transfected with the denV gene of bacteriophage T4. Arrand, J.E., Squires, S., Bone, N.M., Johnson, R.T. EMBO J. (1987) [Pubmed]
  21. Oxygens in DNA are main targets for ethylnitrosourea in normal and xeroderma pigmentosum fibroblasts and fetal rat brain cells. Singer, B., Bodell, W.J., Cleaver, J.E., Thomas, G.H., Rajewsky, M.F., Thon, W. Nature (1978) [Pubmed]
  22. DNA polymerase eta is an A-T mutator in somatic hypermutation of immunoglobulin variable genes. Zeng, X., Winter, D.B., Kasmer, C., Kraemer, K.H., Lehmann, A.R., Gearhart, P.J. Nat. Immunol. (2001) [Pubmed]
  23. Xeroderma pigmentosum cells with normal levels of excision repair have a defect in DNA synthesis after UV-irradiation. Lehman, A.R., Kirk-Bell, S., Arlett, C.F., Paterson, M.C., Lohman, P.H., de Weerd-Kastelein, E.A., Bootsma, D. Proc. Natl. Acad. Sci. U.S.A. (1975) [Pubmed]
  24. Survival of UV-irradiated mammalian cells correlates with efficient DNA repair in an essential gene. Bohr, V.A., Okumoto, D.S., Hanawalt, P.C. Proc. Natl. Acad. Sci. U.S.A. (1986) [Pubmed]
  25. Mammalian DNA nucleotide excision repair reconstituted with purified protein components. Aboussekhra, A., Biggerstaff, M., Shivji, M.K., Vilpo, J.A., Moncollin, V., Podust, V.N., Protić, M., Hübscher, U., Egly, J.M., Wood, R.D. Cell (1995) [Pubmed]
  26. SSL2, a suppressor of a stem-loop mutation in the HIS4 leader encodes the yeast homolog of human ERCC-3. Gulyas, K.D., Donahue, T.F. Cell (1992) [Pubmed]
  27. poliota, a remarkably error-prone human DNA polymerase. Tissier, A., McDonald, J.P., Frank, E.G., Woodgate, R. Genes Dev. (2000) [Pubmed]
  28. TFIIH: a link between transcription, DNA repair and cell cycle regulation. Seroz, T., Hwang, J.R., Moncollin, V., Egly, J.M. Curr. Opin. Genet. Dev. (1995) [Pubmed]
  29. Purification and cloning of a nucleotide excision repair complex involving the xeroderma pigmentosum group C protein and a human homologue of yeast RAD23. Masutani, C., Sugasawa, K., Yanagisawa, J., Sonoyama, T., Ui, M., Enomoto, T., Takio, K., Tanaka, K., van der Spek, P.J., Bootsma, D. EMBO J. (1994) [Pubmed]
  30. Functional deficiency of fibroblasts heterozygous for Bloom syndrome as specific manifestation of the primary defect. Bartram, C.R., Rüdiger, H.W., Schmidt-Preuss, U., Passarge, E. Am. J. Hum. Genet. (1981) [Pubmed]
  31. Requirement of ATM in phosphorylation of the human p53 protein at serine 15 following DNA double-strand breaks. Nakagawa, K., Taya, Y., Tamai, K., Yamaizumi, M. Mol. Cell. Biol. (1999) [Pubmed]
  32. Repair of N-methylpurines in the mitochondrial DNA of xeroderma pigmentosum complementation group D cells. LeDoux, S.P., Patton, N.J., Avery, L.J., Wilson, G.L. Carcinogenesis (1993) [Pubmed]
  33. Ichthyosis bullosa of Siemens is caused by mutations in the keratin 2e gene. Kremer, H., Zeeuwen, P., McLean, W.H., Mariman, E.C., Lane, E.B., van de Kerkhof, C.M., Ropers, H.H., Steijlen, P.M. J. Invest. Dermatol. (1994) [Pubmed]
  34. Differences in in vivo and in vitro sequence-specific sites of cisplatin-DNA adduct formation and detection of a dose-response relationship. Bubley, G.J., Teicher, B.A., Ogata, G.K., Sandoval, L.S., Kusumoto, T. Biochem. Pharmacol. (1994) [Pubmed]
WikiGenes - Universities