Purification and characterization of hydroxycinnamoyl D-glucose. Quinate hydroxycinnamoyl transferase in the root of sweet potato, Ipomoea batatas Lam.
We have previously proposed a chlorogenic acid biosynthetic pathway which involves a transesterification reaction between hydroxycinnamoyl D-glucose and D-quinic acid. The proposed pathway was based on tracer experimental results (Kojima, M., and Uritani, I. (1972) Plant Cell Physiol. 13, 311-319). The enzyme that catalyzes the above reaction has been purified 160-fold from sweet potato root (Ipomoea batatas Lam.) and characterized. The purified enzyme yielded one band of 26,000 daltons on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and its molecular weight was estimated to be 25,000 by gel filtration chromatography. Therefore, the enzyme seems to consist of a single polypeptide of 25,000-26,000 daltons. The isoelectric point of the enzyme was 8. 6. The optimum pH of the enzyme reaction was 6. 0. The enzyme did not require any metal for activity and showed a broad substrate specificity toward hydroxycinnamoyl D-glucose as donors. The Km and Vmax values were 3.7 mM and 8.5 units/mg of protein for t-cinnamoyl D-glucose, 3.9 mM and 15.1 units/mg of protein for p-coumaroyl D-glucose, and 14.3 mM and 38.1 units/mg of protein for caffeoyl D-glucose. The enzyme showed a strict substrate specificity toward D-quinic acid-related compounds as acceptors; the Km and Vmax values were 16.7 mM and 15.1 units/mg of protein for D-quinic acid, 250 mM and 19.0 units/mg of protein for shikimic acid, and there was no activity with either L-malic acid or meso-tartaric acid. The enzyme activity changed in a manner suggesting its involvement in chlorogenic acid biosynthesis during incubation of sliced sweet potato root tissues.[1]References
- Purification and characterization of hydroxycinnamoyl D-glucose. Quinate hydroxycinnamoyl transferase in the root of sweet potato, Ipomoea batatas Lam. Villegas, R.J., Kojima, M. J. Biol. Chem. (1986) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg