The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Purification and characterization of hydroxycinnamoyl D-glucose. Quinate hydroxycinnamoyl transferase in the root of sweet potato, Ipomoea batatas Lam.

We have previously proposed a chlorogenic acid biosynthetic pathway which involves a transesterification reaction between hydroxycinnamoyl D-glucose and D-quinic acid. The proposed pathway was based on tracer experimental results (Kojima, M., and Uritani, I. (1972) Plant Cell Physiol. 13, 311-319). The enzyme that catalyzes the above reaction has been purified 160-fold from sweet potato root (Ipomoea batatas Lam.) and characterized. The purified enzyme yielded one band of 26,000 daltons on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and its molecular weight was estimated to be 25,000 by gel filtration chromatography. Therefore, the enzyme seems to consist of a single polypeptide of 25,000-26,000 daltons. The isoelectric point of the enzyme was 8. 6. The optimum pH of the enzyme reaction was 6. 0. The enzyme did not require any metal for activity and showed a broad substrate specificity toward hydroxycinnamoyl D-glucose as donors. The Km and Vmax values were 3.7 mM and 8.5 units/mg of protein for t-cinnamoyl D-glucose, 3.9 mM and 15.1 units/mg of protein for p-coumaroyl D-glucose, and 14.3 mM and 38.1 units/mg of protein for caffeoyl D-glucose. The enzyme showed a strict substrate specificity toward D-quinic acid-related compounds as acceptors; the Km and Vmax values were 16.7 mM and 15.1 units/mg of protein for D-quinic acid, 250 mM and 19.0 units/mg of protein for shikimic acid, and there was no activity with either L-malic acid or meso-tartaric acid. The enzyme activity changed in a manner suggesting its involvement in chlorogenic acid biosynthesis during incubation of sliced sweet potato root tissues.[1]

References

 
WikiGenes - Universities