The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Ipomoea batatas

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Ipomoea batatas

  • A cultivation-independent approach was used to identify potentially nitrogen-fixing endophytes in seven sweet potato varieties collected in Uganda and Kenya. Nitrogenase reductase genes (nifH) were amplified by PCR, and amplicons were cloned in Escherichia coli [1].
  • Cellulose production from glucose using a glucose dehydrogenase gene (gdh)-deficient mutant of Gluconacetobacter xylinus and its use for bioconversion of sweet potato pulp [2].
  • A repeated batch culture using a mixed culture of C. butyricum and Enterobacter aerogenes produced hydrogen with a yield of 2.4 mol H2/mol glucose under a controlled culture pH of 5.25 in a medium consisting of the sweet potato starch residue and 0.1% Polypepton without addition of any reducing agents [3].
 

High impact information on Ipomoea batatas

  • The crystal structures of the enzyme from sweet potato in the resting dicupric Cu(II)-Cu(II) state, the reduced dicuprous Cu(I)-Cu(I) form, and in complex with the inhibitor phenylthiourea were analyzed [4].
  • We report the crystal structure of the ecdysone receptor LBD heterodimer of the hemipteran Bemisia tabaci (Bt, sweet potato whitefly) in complex with the ecdysone analogue ponasterone A [5].
  • Molecular cloning and characterization of cDNAs for the gamma- and epsilon-subunits of mitochondrial F1F0 ATP synthase from the sweet potato [6].
  • In addition to two major alpha- and beta-subunits, the soluble oligomycin-insensitive F1ATPase purified from sweet potato root mitochondria contains four different minor subunits of gamma (Mr = 35,500), delta (Mr = 27,000), delta' (Mr = 23,000), and epsilon (Mr = 12,000) (Iwasaki, Y., and Asashi, T. (1983) Arch. Biochem. Biophys. 227, 164-173) [7].
  • The enzyme activity changed in a manner suggesting its involvement in chlorogenic acid biosynthesis during incubation of sliced sweet potato root tissues [8].
 

Biological context of Ipomoea batatas

 

Associations of Ipomoea batatas with chemical compounds

 

Gene context of Ipomoea batatas

  • Phenylthiourea (PTU) is a well-known inhibitor of tyrosinase and melanin synthesis and is known to interact with sweet potato catechol oxidase, an enzyme possessing copper binding domain homology to tyrosinase [18].
  • A recessive mutation hsi2 of Arabidopsis (Arabidopsis thaliana) expressing luciferase (LUC) under control of a short promoter derived from a sweet potato (Ipomoea batatas) sporamin gene (Spo(min)LUC) caused enhanced LUC expression under both low- and high-sugar conditions, which was not due to increased level of abscisic acid [19].
  • However, the beet diet caused an apparent inhibition of ECD activity (74% of control) and the sweet potato diet caused an apparent increase (1.3-fold) in GST activity, although statistical significance could not be established at P less than or equal to 0.05 [20].
  • A model of the sweet potato enzyme was generated based on the coordinates of pig PAP [21].
  • Endophytic nifH gene diversity in African sweet potato [1].
 

Analytical, diagnostic and therapeutic context of Ipomoea batatas

References

  1. Endophytic nifH gene diversity in African sweet potato. Reiter, B., Bürgmann, H., Burg, K., Sessitsch, A. Can. J. Microbiol. (2003) [Pubmed]
  2. Cellulose production from glucose using a glucose dehydrogenase gene (gdh)-deficient mutant of Gluconacetobacter xylinus and its use for bioconversion of sweet potato pulp. Shigematsu, T., Takamine, K., Kitazato, M., Morita, T., Naritomi, T., Morimura, S., Kida, K. J. Biosci. Bioeng. (2005) [Pubmed]
  3. Microbial hydrogen production from sweet potato starch residue. Yokoi, H., Saitsu, A., Uchida, H., Hirose, J., Hayashi, S., Takasaki, Y. J. Biosci. Bioeng. (2001) [Pubmed]
  4. Crystal structure of a plant catechol oxidase containing a dicopper center. Klabunde, T., Eicken, C., Sacchettini, J.C., Krebs, B. Nat. Struct. Biol. (1998) [Pubmed]
  5. The X-ray structure of a hemipteran ecdysone receptor ligand-binding domain: comparison with a lepidopteran ecdysone receptor ligand-binding domain and implications for insecticide design. Carmichael, J.A., Lawrence, M.C., Graham, L.D., Pilling, P.A., Epa, V.C., Noyce, L., Lovrecz, G., Winkler, D.A., Pawlak-Skrzecz, A., Eaton, R.E., Hannan, G.N., Hill, R.J. J. Biol. Chem. (2005) [Pubmed]
  6. Molecular cloning and characterization of cDNAs for the gamma- and epsilon-subunits of mitochondrial F1F0 ATP synthase from the sweet potato. Morikami, A., Ehara, G., Yuuki, K., Nakamura, K. J. Biol. Chem. (1993) [Pubmed]
  7. Correspondence of minor subunits of plant mitochondrial F1ATPase to F1F0ATPase subunits of other organisms. Kimura, T., Nakamura, K., Kajiura, H., Hattori, H., Nelson, N., Asahi, T. J. Biol. Chem. (1989) [Pubmed]
  8. Purification and characterization of hydroxycinnamoyl D-glucose. Quinate hydroxycinnamoyl transferase in the root of sweet potato, Ipomoea batatas Lam. Villegas, R.J., Kojima, M. J. Biol. Chem. (1986) [Pubmed]
  9. The regulation of Rubisco activity in response to variation in temperature and atmospheric CO2 partial pressure in sweet potato. Cen, Y.P., Sage, R.F. Plant Physiol. (2005) [Pubmed]
  10. Viral class 1 RNase III involved in suppression of RNA silencing. Kreuze, J.F., Savenkov, E.I., Cuellar, W., Li, X., Valkonen, J.P. J. Virol. (2005) [Pubmed]
  11. Involvement of hydrogen peroxide and nitric oxide in expression of the ipomoelin gene from sweet potato. Jih, P.J., Chen, Y.C., Jeng, S.T. Plant Physiol. (2003) [Pubmed]
  12. Cloning and characterization of a cDNA encoding the cytosolic copper/zinc-superoxide dismutase from sweet potato tuberous root. Lin, C.T., Yeh, K.W., Kao, M.C., Shaw, J.F. Plant Mol. Biol. (1993) [Pubmed]
  13. High-level expression of tuberous root storage protein genes of sweet potato in stems of plantlets grown in vitro on sucrose medium. Hattori, T., Nakagawa, S., Nakamura, K. Plant Mol. Biol. (1990) [Pubmed]
  14. Catalytic flexibility of glycosylases. The hydration of maltal by beta-amylase to form 2-deoxymaltose. Hehre, E.J., Kitahata, S., Brewer, C.F. J. Biol. Chem. (1986) [Pubmed]
  15. Purification, enzymatic properties, and active site environment of a novel manganese(III)-containing acid phosphatase. Sugiura, Y., Kawabe, H., Tanaka, H., Fujimoto, S., Ohara, A. J. Biol. Chem. (1981) [Pubmed]
  16. Beta-carotene-rich orange-fleshed sweet potato improves the vitamin A status of primary school children assessed with the modified-relative-dose-response test. van Jaarsveld, P.J., Faber, M., Tanumihardjo, S.A., Nestel, P., Lombard, C.J., Benadé, A.J. Am. J. Clin. Nutr. (2005) [Pubmed]
  17. Daily consumption of Indian spinach (Basella alba) or sweet potatoes has a positive effect on total-body vitamin A stores in Bangladeshi men. Haskell, M.J., Jamil, K.M., Hassan, F., Peerson, J.M., Hossain, M.I., Fuchs, G.J., Brown, K.H. Am. J. Clin. Nutr. (2004) [Pubmed]
  18. Degradation of tyrosinase induced by phenylthiourea occurs following Golgi maturation. Hall, A.M., Orlow, S.J. Pigment Cell Res. (2005) [Pubmed]
  19. Analysis of a sugar response mutant of Arabidopsis identified a novel B3 domain protein that functions as an active transcriptional repressor. Tsukagoshi, H., Saijo, T., Shibata, D., Morikami, A., Nakamura, K. Plant Physiol. (2005) [Pubmed]
  20. Effects of commonly consumed vegetables on hepatic xenobiotic-metabolizing enzymes in the mouse. Bradfield, C.A., Chang, Y., Bjeldanes, L.F. Food Chem. Toxicol. (1985) [Pubmed]
  21. Identification of mammalian-like purple acid phosphatases in a wide range of plants. Schenk, G., Guddat, L.W., Ge, Y., Carrington, L.E., Hume, D.A., Hamilton, S., de Jersey, J. Gene (2000) [Pubmed]
  22. Mechanism of maltal hydration catalyzed by beta-amylase: role of protein structure in controlling the steric outcome of reactions catalyzed by a glycosylase. Kitahata, S., Chiba, S., Brewer, C.F., Hehre, E.J. Biochemistry (1991) [Pubmed]
  23. Nature of the multiple forms of sweet-potato glucose phosphate isomerase. Phillips, T.L., Porter, D.W., Gracy, R.W. Biochem. J. (1975) [Pubmed]
  24. Bienzyme biosensors for glucose, ethanol and putrescine built on oxidase and sweet potato peroxidase. Castillo, J., Gáspár, S., Sakharov, I., Csöregi, E. Biosensors & bioelectronics. (2003) [Pubmed]
  25. L-galactono-gamma-lactone dehydrogenase from sweet potato: purification and cDNA sequence analysis. Imai, T., Karita, S., Shiratori, G., Hattori, M., Nunome, T., Oba, K., Hirai, M. Plant Cell Physiol. (1998) [Pubmed]
  26. Quantity and potential biological activity of caffeic acid in sweet potato [Ipomoea batatas (L.) Lam.] storage root periderm. Harrison, H.F., Peterson, J.K., Snook, M.E., Bohac, J.R., Jackson, D.M. J. Agric. Food Chem. (2003) [Pubmed]
 
WikiGenes - Universities