The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Ipomoea

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Ipomoea

 

High impact information on Ipomoea

  • Dynamics of mobile element activity in chalcone synthase loci in the common morning glory (Ipomoea purpurea) [2].
  • Analysis of the data indicates a duplication of CHS that predates the divergence of the Ipomoea species in this study [3].
  • The evolution of the chalcone synthase [CHS; malonyl-CoA:4-coumaroyl-CoA malonyltransferase (cyclizing), EC 2.3.1.74] multigene family in the genus Ipomoea is explored [3].
  • Thirteen CHS genes from seven Ipomoea species (family Convolvulaceae) were sequenced--three from genomic clones and the remainder from PCR amplification with primers designed from the 5' flanking region and the end of the 3' coding region of Ipomoea purpurea Roth [3].
  • Purification and characterization of hydroxycinnamoyl D-glucose. Quinate hydroxycinnamoyl transferase in the root of sweet potato, Ipomoea batatas Lam [4].
 

Chemical compound and disease context of Ipomoea

  • Other locomotor disorders that fit more loosely into this group are listerial myelitis (post-dipping staggers), vitamin A deficiency, cervico-thoracic vertebral subluxation Stypandra glauca toxicity, Ipomoea spp toxicity, ivermectin toxicity, and botulism [5].
 

Biological context of Ipomoea

 

Anatomical context of Ipomoea

 

Associations of Ipomoea with chemical compounds

  • Evolution of the chalcone synthase gene family in the genus Ipomoea [3].
  • The effect of Ipomoea batatas (Caiapo) on glucose metabolism and serum cholesterol in patients with type 2 diabetes: a randomized study [13].
  • Activity staining on polyacrylamide gels of trypsin inhibitors from leaves of sweet potato (Ipomoea batatas L. Lam) varieties [14].
  • Biochemical and spectroscopic characterization of catechol oxidase from sweet potatoes (Ipomoea batatas) containing a type-3 dicopper center [15].
  • Alternative transcript initiation and novel post-transcriptional processing of a leucine-rich repeat receptor-like protein kinase gene that responds to short-day photoperiodic floral induction in morning glory (Ipomoea nil) [16].
 

Gene context of Ipomoea

  • Furthermore, we found that the expression of the psbA gene is in the same range as in the autotrophic Ipomoea purpurea which belongs to the same family as Cuscuta (Convolvulaceae) [17].
  • While the wild-type morning glory (Ipomoea tricolor) displays bright-blue flowers and dark-brown seeds, its spontaneous mutant, Blue Star, carrying the mutable ivory seed-variegated (ivs-v) allele, exhibits pale-blue flowers with a few fine blue spots and ivory seeds with tiny dark-brown spots [18].
  • The isolation and purification of this metabolite from Ipomoea purpurea plants fed with 1-deoxy-D-xylulose (DX), followed by NMR analysis, resulted in the identification of its structure as (-)-2C-methyl-D-erythrono-1,4-lactone (MDEL) [19].
  • Over 350 strains of Kodamaea anthophila were isolated from Hibiscus and morning glory flowers (Ipomoea spp.) in Australia, and from associated nitidulid beetles and Drosophila hibisci [20].
  • In the Japanese morning glory (Ipomoea nil or Pharbitis nil), a shift from reddish-purple buds to blue open flowers correlates with an increase in the vacuolar pH [21].
 

Analytical, diagnostic and therapeutic context of Ipomoea

References

  1. Identification of the glycosidase inhibitors swainsonine and calystegine B2 in Weir vine (Ipomoea sp. Q6 [aff. calobra]) and correlation with toxicity. Molyneux, R.J., McKenzie, R.A., O'Sullivan, B.M., Elbein, A.D. J. Nat. Prod. (1995) [Pubmed]
  2. Dynamics of mobile element activity in chalcone synthase loci in the common morning glory (Ipomoea purpurea). Durbin, M.L., Denton, A.L., Clegg, M.T. Proc. Natl. Acad. Sci. U.S.A. (2001) [Pubmed]
  3. Evolution of the chalcone synthase gene family in the genus Ipomoea. Durbin, M.L., Learn, G.H., Huttley, G.A., Clegg, M.T. Proc. Natl. Acad. Sci. U.S.A. (1995) [Pubmed]
  4. Purification and characterization of hydroxycinnamoyl D-glucose. Quinate hydroxycinnamoyl transferase in the root of sweet potato, Ipomoea batatas Lam. Villegas, R.J., Kojima, M. J. Biol. Chem. (1986) [Pubmed]
  5. The clinical differentiation of nervous and muscular locomotor disorders of sheep in Australia. Bourke, C.A. Aust. Vet. J. (1995) [Pubmed]
  6. A putative receptor protein kinase gene in Ipomoea trifida. Kowyama, Y., Kakeda, K., Kondo, K., Imada, T., Hattori, T. Plant Cell Physiol. (1996) [Pubmed]
  7. Effects of combination of Caiapo with other plant-derived substance on anti-diabetic efficacy in KK-Ay mice. Sakuramata, Y., Oe, H., Kusano, S., Aki, O. Biofactors (2004) [Pubmed]
  8. Alterations in intracellular and extracellular activities of antioxidant enzymes during suspension culture of sweetpotato. Kim, Y.H., Kim, Y., Cho, E., Kwak, S., Kwon, S., Bae, J., Lee, B., Meen, B., Huh, G.H. Phytochemistry (2004) [Pubmed]
  9. Multiple transcripts of a gene for a leucine-rich repeat receptor kinase from morning glory (Ipomoea nil) originate from different TATA boxes in a tissue-specific manner. Bassett, C.L., Nickerson, M.L., Farrell, R.E., Harrison, M. Mol. Genet. Genomics (2004) [Pubmed]
  10. Regioselective acylation of flavonoid glucoside with aromatic acid by an enzymatic reaction system from cultured cells of Ipomoea batatas. Nakajima, N., Ishihara, K., Hamada, H., Kawabe, S., Furuya, T. J. Biosci. Bioeng. (2000) [Pubmed]
  11. The relationship between electron flux and the redox poise of the quinone pool in plant mitochondria. Interplay between quinol-oxidizing and quinone-reducing pathways. Van den Bergen, C.W., Wagner, A.M., Krab, K., Moore, A.L. Eur. J. Biochem. (1994) [Pubmed]
  12. Evaluation of the relaxant action of some Brazilian medicinal plants in isolated guinea-pig ileum and rat duodenum. Emendörfer, F., Emendörfer, F., Bellato, F., Noldin, V.F., Niero, R., Cechinel-Filho, V., Cardozo, A.M. Journal of pharmacy & pharmaceutical sciences [electronic resource] : a publication of the Canadian Society for Pharmaceutical Sciences, Société canadienne des sciences pharmaceutiques. (2005) [Pubmed]
  13. The effect of Ipomoea batatas (Caiapo) on glucose metabolism and serum cholesterol in patients with type 2 diabetes: a randomized study. Ludvik, B.H., Mahdjoobian, K., Waldhaeusl, W., Hofer, A., Prager, R., Kautzky-Willer, A., Pacini, G. Diabetes Care (2002) [Pubmed]
  14. Activity staining on polyacrylamide gels of trypsin inhibitors from leaves of sweet potato (Ipomoea batatas L. Lam) varieties. Hou, W.C., Lin, Y.H. Electrophoresis (1998) [Pubmed]
  15. Biochemical and spectroscopic characterization of catechol oxidase from sweet potatoes (Ipomoea batatas) containing a type-3 dicopper center. Eicken, C., Zippel, F., Büldt-Karentzopoulos, K., Krebs, B. FEBS Lett. (1998) [Pubmed]
  16. Alternative transcript initiation and novel post-transcriptional processing of a leucine-rich repeat receptor-like protein kinase gene that responds to short-day photoperiodic floral induction in morning glory (Ipomoea nil). Bassett, C.L., Nickerson, M.L., Cohen, R.A., Rajeevan, M.S. Plant Mol. Biol. (2000) [Pubmed]
  17. A large deletion in the plastid DNA of the holoparasitic flowering plant Cuscuta reflexa concerning two ribosomal proteins (rpl2, rpl23), one transfer RNA (trnI) and an ORF 2280 homologue. Bömmer, D., Haberhausen, G., Zetsche, K. Curr. Genet. (1993) [Pubmed]
  18. An intragenic tandem duplication in a transcriptional regulatory gene for anthocyanin biosynthesis confers pale-colored flowers and seeds with fine spots in Ipomoea tricolor. Park, K.I., Choi, J.D., Hoshino, A., Morita, Y., Iida, S. Plant J. (2004) [Pubmed]
  19. (-)-2C-methyl-D-erythrono-1,4-lactone is formed after application of the terpenoid precursor 1-deoxy-D-xylulose. Fellermeier, M.A., Maier, U.H., Sagner, S., Bacher, A., Zenk, M.H. FEBS Lett. (1998) [Pubmed]
  20. Kodamaea nitidulidarum, Candida restingae and Kodamaea anthophila, three new related yeast species from ephemeral flowers. Rosa, C.A., Lachance, M.A., Starmer, W.T., Barker, J.S., Bowles, J.M., Schlag-Edler, B. Int. J. Syst. Bacteriol. (1999) [Pubmed]
  21. Genes encoding the vacuolar Na+/H+ exchanger and flower coloration. Yamaguchi, T., Fukada-Tanaka, S., Inagaki, Y., Saito, N., Yonekura-Sakakibara, K., Tanaka, Y., Kusumi, T., Iida, S. Plant Cell Physiol. (2001) [Pubmed]
  22. Characterization of lipophilic pentasaccharides from beach morning glory (Ipomoea pes-caprae). Pereda-Miranda, R., Escalante-Sánchez, E., Escobedo-Martínez, C. J. Nat. Prod. (2005) [Pubmed]
  23. Molecular cloning of two metallothionein-like protein genes with differential expression patterns from sweet potato (Ipomoea batatas) leaves. Chen, H.J., Hou, W.C., Yang, C.Y., Huang, D.J., Liu, J.S., Lin, Y.H. J. Plant Physiol. (2003) [Pubmed]
  24. Pinoresinol from Ipomoea cairica cell cultures. Páska, C., Innocenti, G., Ferlin, M., Kunvári, M., László, M. Natural product letters. (2002) [Pubmed]
  25. An aqueous extract of the green leafy vegetable Ipomoea aquatica is as effective as the oral hypoglycaemic drug tolbutamide in reducing the blood sugar levels of Wistar rats. Malalavidhane, S., Wickramasinghe, S.M., Jansz, E.R. Phytotherapy research : PTR. (2001) [Pubmed]
 
WikiGenes - Universities