The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Rat spermatogenesis in vitro traced by quantitative flow cytometry.

In vitro differentiation of germ cells in rat seminiferous tubule segments at stages II-III of the epithelial cycle was studied. DNA flow cytometry was used for quantitation of absolute cell numbers from the cultured tubule segments that were compared to freshly isolated stages of the cycle, as identified by transillumination stereomicroscopy of the seminiferous tubules and phase-contrast microscopy of live cell squashes. Spermatogonia and spermatocytes from stages II-III showed normal morphological differentiation during 7 days in vitro. Round spermatids differentiated to Step 7 of spermiogenesis but Step 16 spermatids failed to develop. Acid phosphatase activity in the spermatogenic cells changed normally during the culture. As compared with freshly isolated control tubule segments, 35% of round spermatids and 42% of pachytene spermatocytes were present in culture after 7 days. The cell numbers recovered from defined stages by DNA flow cytometry were close to those found in morphometric studies. Flow cytometry is an efficient quantitation method for cells liberated from seminiferous epithelium. Spermatogonia, spermatocytes, and early spermatids are able to differentiate in vitro, but spermatids approaching the elongation (acrosome) phase, and particularly the maturation phase, fail to differentiate under present culture conditions.[1]

References

  1. Rat spermatogenesis in vitro traced by quantitative flow cytometry. Toppari, J., Mali, P., Eerola, E. J. Histochem. Cytochem. (1986) [Pubmed]
 
WikiGenes - Universities