The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Distribution of receptors for granulocyte-macrophage colony-stimulating factor on immature CD34+ bone marrow cells, differentiating monomyeloid progenitors, and mature blood cell subsets.

Biotin-labeled granulocyte-macrophage colony-stimulating factor (GM-CSF), in combination with phycoerythrin-conjugated streptavidin, enabled flow cytometric analysis of specific cell-surface GM-CSF receptors on rhesus monkey bone marrow (BM) and peripheral blood (PB) cells. GM-CSF receptors were readily detected on PB monocytes and neutrophils, but not on lymphocytes. In BM, GM-CSF receptors were identified on monocyte and neutrophil precursors and on subsets of cells that expressed the CD34 antigen. CD34+ cells with high GM-CSF-receptor expression coexpressed high levels of the class II major histocompatibility antigen RhLA-DR, whereas CD34+/RhLA-DRlow cells, which represent developmentally earlier cells, were either GM-CSF-receptor negative or expressed GM-CSF receptors at very low levels. The fluorescence histogram of CD34bright/RhLA-DRdull cells stained with biotin-GM-CSF showed that at least a fraction of these cells expressed low levels of GM-CSF receptors. CD34+ cells with high GM-CSF-receptor expression, purified by cell sorting, did not form colonies in culture or proliferate in response to GM-CSF. Instead, GM-CSF stimulation resulted in terminal differentiation into adherent cells, showing that these cells represented monocyte precursors. A distinct subset of CD34+ cells expressed GM-CSF receptors at low-to-intermediate levels and proliferated strongly in the presence of GM-CSF during short-term culture, but produced very few erythroid or monomyeloid colonies after longer culture periods. Most colony-forming cells, also those responsive to GM-CSF alone, were recovered in the subset of CD34+ cells on which GM-CSF receptors were virtually undetectable. These cells showed weaker proliferation in short-term proliferation assays than the CD34+/GM- CSF-receptor-intermediate cells, consistent with an immature phenotype. The results show that GM-CSF-receptor expression is initiated in a subset of immature, CD34bright/RhLA-DRdull cells and is progressively increased during differentiation into mature granulocytes and monocytes. The method used provides a new way to deplete developmentally early CD34+ cell of differentiating granulocyte and monocyte precursor cells.[1]


WikiGenes - Universities