The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Transforming growth factor beta 1 inhibits expression of the gene products for steel factor and its receptor (c-kit).

Transforming growth factor beta 1 (TGF-beta 1), a product of marrow stromal cells, inhibits the proliferation and differentiation of hematopoietic progenitor cells within the hematopoietic microenvironment. Steel factor (SF), also a product of marrow stromal cells, is an essential positive regulator of hematopoiesis in vivo. TGF-beta 1 has been shown to repress human and murine leukemic cell and murine lin- bone marrow mononuclear cell expression of the receptor for SF (c-kit). We speculated that TGF-beta 1 might exert its inhibitory effect on hematopoiesis in part by decreasing SF/c-kit interactions. Therefore, we tested the hypothesis that TGF-beta 1 inhibits both stromal cell expression of SF and hematopoietic progenitor cell expression of c-kit. We measured stromal cell expression of SF protein and hematopoietic progenitor cell expression of membrane- bound c-kit before and after exposure to recombinant human TGF-beta 1. Both stromal cell expression of SF protein and hematopoietic progenitor cell expression of c-kit protein were inhibited 50% to 80% by TGF-beta 1. Using Northern blot and ribonuclease protection assays, we determined that TGF-beta 1 repressed stromal cell SF mRNA, but did not alter SF transcript stability. TGF-beta 1 was also found to repress c-kit mRNA in human leukemic myeloblasts as well as in normal lin- hematopoietic progenitor cells. In contrast with its effect on SF mRNA, TGF-beta 1 accelerated the degradation of c-kit mRNA. We conclude that TGF-beta 1 inhibits stromal cell production of SF by repression of SF gene transcription and represses hematopoietic progenitor cell expression of c-kit by decreasing the stability of c-kit transcripts. Taking into account the importance of SF and c-kit in maintaining steady-state hematopoiesis in vivo, the dual effect of TGF-beta 1 on both SF and c-kit gene expression is likely to be one of the major mechanisms by which TGF-beta 1 inhibits hematopoiesis in vivo.[1]

References

 
WikiGenes - Universities